Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T13:32:42.706Z Has data issue: false hasContentIssue false

From Radiation Induced Leakage Current to Soft Breakdown in Irradiated MOS Devices With Ultrathin Gate Oxide

Published online by Cambridge University Press:  10 February 2011

M. Ceschia
Affiliation:
Dipartimento di Elettronica e Informatica, Università di Padova, via Gradenigo 6a, 35131 Padova, Italy, and INFM, via Marzolo, 8, 35131 Padova, Italy
A. Paccagnella
Affiliation:
Dipartimento di Elettronica e Informatica, Università di Padova, via Gradenigo 6a, 35131 Padova, Italy, and INFM, via Marzolo, 8, 35131 Padova, Italy
A. Cester
Affiliation:
Dipartimento di Elettronica e Informatica, Università di Padova, via Gradenigo 6a, 35131 Padova, Italy, and INFM, via Marzolo, 8, 35131 Padova, Italy
G. Ghidini
Affiliation:
ST-Microelectronics, via C. Olivetti 2, 20041 Agrate Brianza, Italy
J. Wyss
Affiliation:
Dipartimento di Fisica, Università di Padova, via Marzolo 8, 35131 Padova, Italy
Get access

Abstract

Metal Oxide Semiconductor (MOS) capacitors with ultra-thin oxides have been irradiated with ionising particles (8 MeV electrons or Si, Ni, and Ag high energy ions), featuring various Linear Energy Transfer (LET) ranging over 4 orders of magnitude. Different oxide fields (Fbias) were applied during irradiation, ranging between flat-band and 3 MV/cm. We measured the DC Radiation Induced Leakage Current (RILC) at low fields (3-6 MV/cm) after electron or Si ion irradiation. RILC was the highest in devices biased at flat band during irradiation. In devices irradiated with higher LET ions (Ni and Ag) we observed the onset of Soft-Breakdown phenomena. Soft-Breakdown current increases with the oxide field applied during the stress.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Weir, B. et al. , IEEE International Electron Device Meeting IEDM 1997, pp.7376Google Scholar
[2]Sexton, F.W. et al. , IEEE Trans. Nucl. Sci. 45, pp. 25092518 (1998).Google Scholar
[3]Johnston, A.H., Swift, G.M., Miyahira, T., and Edmonds, L.D., IEEE Trans. Nucl. Sci. 45, pp. 25002508 (1998).Google Scholar
[4]Titus, J.L. et al. , IEEE Trans. Nucl. Sci. 45, pp. 24922499 (1998).Google Scholar
[5]Scarpa, A. et al. , IEEE Trans. Nucl. Sci. 44, pp. 18181825 (1997).Google Scholar
[6]Ceschia, M., Paccagnella, A., Cester, A., Scarpa, A., and Ghidini, G., IEEE Trans. Nucl. Sci. 45, pp. 23752382 (1998).Google Scholar
[7]Sakakibara, K., Ajika, N., Hatanaka, M., Miyosji, H., and Yasuoka, A., IEEE Trans. Electron Dev. 44, pp.986992 (1997).Google Scholar
[8]Miranda, E. et al. , IEEE Electron Dev. Lett. 20, pp.265267 (1999).Google Scholar
[9]Yokozawa, A. et al. , IEEE International Electron Device Meeting IEDM 1997, pp.703706Google Scholar
[10]Ma, T.P. and Dressendorfer, P.V., Ionizing Radiation Effects in MOS Devices and Circuits, Wiley, New York, 1989, ch.4Google Scholar
[11]Scarpa, A. et al. , Microelectronics Eng. 36, pp. 145148 (1997)Google Scholar