Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-22T02:14:19.403Z Has data issue: false hasContentIssue false

Front-End Integration Effects on Gate Oxide Quality

Published online by Cambridge University Press:  15 February 2011

F. Lin
Affiliation:
Advanced Custom Technologies, Motorola, Inc., 2200 W. Broadway Rd., Mesa, AZ 85202
S. A. Ajuria
Affiliation:
Semiconductor Technologies Laboratory, Motorola, Inc., 3501 Ed Bluestein Blvd., Austin, TX 78721
V. Ilderem
Affiliation:
Advanced Custom Technologies, Motorola, Inc., 2200 W. Broadway Rd., Mesa, AZ 85202
M. P. Masquelier
Affiliation:
Advanced Custom Technologies, Motorola, Inc., 2200 W. Broadway Rd., Mesa, AZ 85202
Get access

Abstract

In this paper, the impact of several front-end processing steps (up to gate oxidation) on gate oxide integrity (GOI) is evaluated. In PBL isolation processing, the use of as-deposited amorphous silicon (a-Si), subsequently annealed during nitride deposition, results in better structural and electrical properties compared to as-deposited polysilicon or as-deposited a-Si with an extra anneal step prior to nitride deposition. Thicker or dual sacrificial schemes exhibit improved gate oxide low voltage breakdown and charge-to-breakdown. Dilute RCA chemistries during pre-gate cleaning produce equal or better surfaces for gate oxidation than the conventional non-dilute RCA with less chemical usage. As gate oxides are scaled below 100Å, lowering gate oxidation temperature is proven to result in far better gate oxide quality than maintaining process temperatures at or above 900°C and diluting oxygen in either argon or nitrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ajuria, S., Tobin, P.J., Nguyen, B-Y., Limb, Y., and Mele, T.C., VLSI Tech. Digest, p113, 1995.Google Scholar
2. Lee, H., Huh, Y., Goo, J-S., Lee, S-D., Yang, D., and Kim, W., IEDM Tech. Digest, p683, 1995.Google Scholar
3. Krishnan, S., Aur, S., Wilhite, G., and Rajgopal, R., IEDM Tech. Digest, 315, 1995.Google Scholar
4. Hhezzo, M., Kaminsky, E., Nissan-Cohen, Y., Frank, P., and Saia, R., J. Electrochem. Soc., 136, p 992, July, 1989.Google Scholar
5. Han, Y. and Ma, B., VLSI Sci. & Tech., Electrochem. Soc., 84–7, p334, 1984.Google Scholar
6. Shankoff, T.A., Sheng, T.T., Haszko, S.E., Marcus, R.B., and Smith, T.E., Solid -state Sci. & Tech., J. Electrochem. Soc., p 216, January, 1980.Google Scholar
7. Hoshi, N., Kayama, S., Nishihara, T., Aoyama, J., Komatsu, T., and Shimada, T., 12.3, IEDM, 1996.Google Scholar
8. Ohmi, T., Mishima, H., Mizuniwa, H., and Abe, M., Microcontamination, 7(5): 2532, 108 (1988).Google Scholar
9. Christenson, K.K., Smith, S.M., and Werho, D., Microcontamination, Ultraclean Manu. Tech. & Mana., June, 1984.Google Scholar
10. Bhattacharyya, A. and Vorst, C., J. Electrochem. Soc., 132, p1990, 1985.Google Scholar
11. Chonko, M.A., ECS Extended Abstracts, 94–1, p256, 1994.Google Scholar
12. Wadanabe, T. and Yoshida, Y., Solid State Technol., pp. 263266, April 1984.Google Scholar
13. Navi, M., “Oxidation of Silicon in Chlorine Containing Ambients,” SRC Technical Report No. T93019, 1993 Google Scholar