Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-16T19:22:19.401Z Has data issue: false hasContentIssue false

FT-IR Characterization and Ab Initio Study of the Surface Species of a Nanosized SiC Powder

Published online by Cambridge University Press:  15 February 2011

Marie-Isabelle Baraton
Affiliation:
LMCTS, URA 320 CNRS, Faculty of Science, 123 Av. A. Thomas, F-87060 Limoges, France
Sylvette Besnaïnou
Affiliation:
Lab. Physical Chemistry, URA 176 CNRS, 11 r. P. et M. Curie, F-75231 Paris Cedex 05, France
Lhadi Merhari
Affiliation:
LMCTS, URA 320 CNRS, Faculty of Science, 123 Av. A. Thomas, F-87060 Limoges, France
Get access

Abstract

The v(SiH) stretching absorption band is known to be sensitive to the local environment of the silicon atom. The presence of SiH groups on silicon carbide surface can be taken advantage of to evaluate the oxidation degree of this ceramic powder.

The surface analysis of a SiC nanosized powder was performed by FT-IR spectrometry. The evolution of the v(SiH) absorption band, followed in situ under controlled temperatures and oxygen pressures, consists in a frequency shift toward higher wavenumbers when oxidation proceeds. The resolution of the Sill absorption range into four subbands corresponding to the HSiOxC3−x possible surface groups showed the relative evolution of the different species. Ab initio SCF MO calculations on molecular models gave evidence of the charge transfer to the more electronegative oxygen atom, making the silicon atom more positive and seemingly strengthening the SiH bond and thus inducing an upward shift of the v(SiH) frequency.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vix-Guterl, C., Lahaye, J. and Ehrburger, P., Carbon 31, 629 (1993).Google Scholar
2. Boutonnet-Kizling, M., Stenius, P., Andersson, S. and Frestad, A., Appl. Catalysis B 1, 149 (1992).Google Scholar
3. Low, M.J.D. and Severdia, A.G., J. Mol. Struct. 80, 209 (1982).Google Scholar
4. Cauchetier, M., Croix, O., Luce, M., Michon, M., Paris, J. and Tistchenko, S., Ceram. Intern. 13, 13 (1987).Google Scholar
5. Baraton, M.I., J. High Temp. Chem. Proc. (1994), in press.Google Scholar
6. Ramis, G., Busca, G., Lorenzelli, V., Baraton, M.I., Merle, T. and Quintard, P. in Surfaces and Interfaces Analysis, edited by Dufour, L.C. (Kluwer Academic Publishers, Dordrecht, 1989) pp. 173184.Google Scholar
7. Quintard, P., Ramis, G., Cauchetier, M., Busca, G. and Lorenzelli, V., J. Mol. Struct. 174, 369 (1988).Google Scholar
8. Tsu, D.V., Lucovsky, G. and Davidson, B.N., Phys. Rev. B 40, 1795 (1989).Google Scholar
9. Koropecki, R.R., Alvarez, F. and Arce, R., J. Appl. Phys. 69, 7805 (1991).Google Scholar
10. Tsu, D.V. and Lucovsky, G., J. Non-Cryst. Solids 114, 501 (1989).Google Scholar
11. Gaussian 92, Revision E. 1, Frisch, M.J., Trucks, G.W., Head-Gordon, M., Gill, P.M.W., Wong, M.W., Foresman, J.B., Johnson, B.G., Schlegel, H.B., Robb, M.A., Replogle, E.S., Gomperts, R., Andres, J.L., Raghavachari, K., Binkley, J.S., Gonzalez, C., Martin, R.L., Fox, D.J., Defrees, D.J., Baker, J., Stewart, J.J.P. and Pople, J.A., Gaussian, Inc., Pittsburgh PA, 1992.Google Scholar
12. Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A., Ab initio Molecular Orbital Theory (J. Wiley Publishers, New-York, 1986) pp. 133344.Google Scholar
13. Pelmenschikov, A.G., Morosi, G. and Gamba, A., J. Phys. Chem. 96, 7422 (1992).Google Scholar
14. Janz, G.J. and Mikawa, Y., Bull. Chem. Soc. Japan 34, 1495 (1961).Google Scholar
15. Sanderson, R.T., Chemical Bonds and Bond Energy (Academic, New-York, 1976) p. 77.Google Scholar
16. He, L., Kurata, Y., Inokuma, T. and Hasegawa, S., Appl. Phys. Lett. 63, 162 (1993).Google Scholar