Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T17:26:02.947Z Has data issue: false hasContentIssue false

Functionalizing Fullerenes Through Cycloaddition Reactions

Published online by Cambridge University Press:  25 February 2011

Ripudaman Malhotra
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
Subhash C. Narang
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
Asutosh Nigam
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
S. Ganapathiappan
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
Susanna Ventura
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
Apparao Satyam
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
Tilak Bhardawaj
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
Donald C. Lorents
Affiliation:
Chemistry and Molecular Physics Laboratories, SRI International, Menlo Park, CA 94025–3493
Get access

Abstract

We have explored several cycloaddition reactions as a general approach for preparing fullerene derivatives. In view of their electron-deficient nature, they are expected to participate as dienophiles rather than dienes in cycloadditions. This behavior is exemplified in their reactions with sulfur trioxide, diphenylisobenzofuran, and the nitrone from cyclohexanone and N-methyl-hydroxylamine. Fullerenes also formed adducts with maleic anhydride, although in this case the nature of the adduct is not clear. While changes in physical properties such as solubility or IR spectra clearly indicated formation of adducts, mass spectral analysis of diese and many other fullerene derivatives often showed ions due to fullerenes; thus confirmatory evidence for the derivatives was not available from mass spectrometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krätschmer, W.; Lamb, L. D.; Fostiropoulous, K.; and Huffman, D. R. Nature 1990 347, 354.Google Scholar
2. Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M.M.; O'Brien, S. C.; Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R. H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; and Smalley, R. E. J. Phys. Chem. 1990 94, 8634.Google Scholar
3. Allemand, P. M.; Koch, A.; Wudl, F.; Rubin, Y.; Diedrich, F.; Alvarez, M. M.; Anz, S. J.; Whetten, R. L. J. Am. Chem. Soc. 1991 113, 1050.Google Scholar
4. Bausch, J. W.; Prakash, G.K.S.; Olah, G. A.; Tse, D. S.; Lorents, D. C.; Bae, Y. K.; Malhotra, R. J. Am. Chem. Soc. 1991 113, 3250.Google Scholar
5. Wudl, F.; et al. Large Carbon Clusters, Hammond, G. S. and Kuck, V. J., Editors, ACS Symposium Series. Washington D.C., 1991.Google Scholar
6. Hawkins, J. M.; Lewis, T. A.; Loren, S. D.; Meyer, A.; Heath, J. R.; Shibato, Y.; Saykally, R. J. Science 1991, 252, 312.Google Scholar
7. Fagan, P. J., Calabrese, J. C.; Malone, B. Science 1991, 252, 1160.Google Scholar
8. Roberts, D. W.; Williams, D. L. Tetrahedron 1987, 43, 1027.Google Scholar