Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-10-04T19:11:59.487Z Has data issue: false hasContentIssue false

Gan Nanotubes

Published online by Cambridge University Press:  15 February 2011

Seung Mi Lee
Affiliation:
Department of Semiconductor Science and Technology, Jeonbuk National University, Jeonju 561-756, Korea
Young Hee Lee*
Affiliation:
Department of Semiconductor Science and Technology, Jeonbuk National University, Jeonju 561-756, Korea Dept, of Physics and Semiconductor Physics Research Center, Jeonbuk National University, Jeonju 561-756, leeyh@sprc2.chonbuk.ac.kr
Yong Gyoo Hwang
Affiliation:
Dept. of Physics, Wonkwang University, Iksan 570-749, Korea
J. Eisner
Affiliation:
Universitaet-GH Paderborn, Fachbereich Physik, Theoretische Physik, 33095 Paderborn, Germany
Dirk Porezag
Affiliation:
Code 6690, Complex Systems Theory Branch, Naval Research Laboratory, Washington, D.C. 20375-5320, USA
Thomas Frauenheim
Affiliation:
Universitaet-GH Paderborn, Fachbereich Physik, Theoretische Physik, 33095 Paderborn, Germany
*
To whom correspondence should be addressed
Get access

Abstract

We perform parametrized density-functional calculations to predict the stability and formation mechanism of GaN nanotubes. Strain energies of GaN nanotubes are comparable to those of carbon nanotubes, suggesting the possibility for the formation of GaN nanotubes. We note that an intermediate phase with [4,6,10] polygons exist at armchair tube edge, which may play as a nucleation seed of further tube growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Iijima, S. and Ichihashi, T., Nature 363, 603 (1993).Google Scholar
[2] Thess, A. et al., Science 273, 483 (1996).Google Scholar
[3] Guo, T. et at., Chem. Phys. Lett. 243, 49 (1995).Google Scholar
[4] Terrones, M. et at., Nature 388, 52 (1997).Google Scholar
[5] Hanmada, N. et at., Phys. Rev. Lett. 68, 1579 (1992).Google Scholar
[6] Mintmire, J. W. et al., Phys. Rev. Lett. 68, 631 (1992).Google Scholar
[7] We follow the notation by Dresseihaus, M. S. et at., in Science of Futterenes and Carbon Nanotubes, (Academic Press, 1996) Chapter 19.Google Scholar
[8] Oh, D.-H. and Lee, Y. H., Phys. Rev. B 58, 7407 (1998).Google Scholar
[9] Herr, W. A. de et al., Science 270, 1179 (1995).Google Scholar
[10] Rinzler, A. G. et al., Science 269 (1995).Google Scholar
[11] Nakamura, S. et al., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
[12] For a general review, see, for instance, Semiconductors and Semimetats, vol. 50, Eds. Pankove, J. I. and Moutakas, T., (Academic Press, New York, 1998).Google Scholar
[13] Loiseau, A. et at., Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
[14] Suenaga, K. et al., Science 278, 653 (1997).Google Scholar
[15] Elstner, M. et al., Phys. Rev. B 58, 7260 (1998).Google Scholar
[16] Lei, T. et at., J. Appl. Phys. 71, 4933 (1992); R. C. Powell et at., J. Appl. Phys. 73, 189 (1993).Google Scholar
[17] Strite, S. et al., J. Vac. Sci. Technol. B 9, 192 (1991).Google Scholar
[18] Miwa, K. and Fukumoto, A., Phys. Rev. B 48, 7897 (1993).Google Scholar
[19] Lee, S. M. and Lee, Y. H., unpublished.Google Scholar
[20] Lee, S. M. and Lee, Y. H., Surf. Sci. 347, 329 (1996); D.-H. Oh and Y. H. Lee J. Kor. Phys. Soc. 28, S167 (1996); J. E. Northrup, Phys. Rev. B 47, 10032 (1993).Google Scholar
[21] Blase, X. et al., Phys. Rev. Lett. 80, 1667 (1998).Google Scholar
[22] Lee, Y. H., Kim, S. G., and Tomanek, D., Phys. Rev. Lett. 78, 2393 (1997).Google Scholar