Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-11T08:53:02.117Z Has data issue: false hasContentIssue false

Gas Source Molecular Beam Epitaxy of ZnSe on (In,Ga)P

Published online by Cambridge University Press:  22 February 2011

K. Lu
Affiliation:
Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139
P.A. Fisher
Affiliation:
Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139
E. Ho
Affiliation:
Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139
J.L. House
Affiliation:
Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139
G.S. Petrich
Affiliation:
Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139
L.A. Kolodziejski
Affiliation:
Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology Cambridge, MA 02139
Get access

Abstract

The wide bandgap semiconductor ZnSe has been nucleated on epitaxial (In,Ga)P buffer layers (on GaAs substrates) having various In compositions, and hence various lattice constants. The III-V ternary alloy offers a wide range of lattice constants for the heteroepitaxy of a multitude of potential II-VI light emitting devices, such as blue pn injection lasers composed of the (Zn,Mg)(S,Se) material system. Since the II-VI and III-V layers are grown using gas source molecular beam epitaxy in separate dedicated reactors, the technique of amorphous As deposition is employed to passivate the (In,Ga)P surface prior to the ex situ transfer. High resolution double crystal x-ray diffraction measurements on the ZnSe/(In,Ga)P/GaAs heterostructures indicate that for In compositions of 50-52%, the buffer layers with a thickness of 4 μm were only partially relaxed on the GaAs substrates, with the residual mismatch remaining at the ZnSe/III-V heterointerface. The critical thickness of (In,Ga)P, with In concentrations near 52-56%, on GaAs greatly exceeds the predicted critical thickness from either the energy balancing or force balancing model. For an In composition of 56% (and a film thickness of 4 μm), the buffer layers contain an in-plane lattice constant equal to that of ZnSe, and therefore represent the lattice-matched condition, even though the film is not fully relaxed. For (In,Ga)P buffer layers lattice-matched to ZnSe, but mismatched to GaAs, the surface exhibits the expected cross-hatched surface morphology. The occurrence of the cross-hatched surface is significantly alleviated by the addition of a pseudomorphic layer of GaAs positioned between the ZnSe and (In,Ga)P layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Park, S.R. M.. Troffer, M. B., Rouleau, C. M., DePuydt, J. M., and Haase, M. A., Appl. Phys. Lett. 57 (1990) 2127.Google Scholar
2 Ohkawa, K.. Karasawa, T., and Mitsuyu, T., Jpn J. Appi. Phys. 30 (1991) L152.Google Scholar
3 Haase, M. A.. Qiu, J., DePuydt, J. M., Cheng, H., Appl. Phys. Lett. 59 (1991) 1272.Google Scholar
4 Jeon, H.. Ding, J., Patterson, W., Nurmikko, A.V., Xie, W., Grillo, D. C., Kobayashi, M., Gunshor, R. L., Appl. Phys. Lett. 59 (1991) 3619.Google Scholar
5 Miyajima, H. Okuvaman T., Morinaga, Y., Hiei, F., Ozawa, M., Akimoto, K., Electron. Lett. 28 (1992) 1798; N. Nakayama. S. Itoh, T. Ohata, K. Nakano, H. Okuyama, M. Ozawa, A. Ishibashi. M. Ikeda. Y. Mori, Electron. Lett. 29 (1993) 1488.Google Scholar
6 Gaines, J. M., Drenten, R. R., Haberen, K. W., Marshall, T., Mensz, P., Petruzzello, J., Appl. Phys. Lett. 62 (1993) 2462.Google Scholar
7 Salokatve, A. Jeon, H., Ding, J., Hovinen, M., Nurmikko, A. V., Grillo, D. C., He, Li, Han, J., Fan, Y., Ringle, M., Gunshor, R. L., Hua, G. C., Otsuka, N., Electron. Lett. 29 (1993) 2192, H. Jeon, M. Hageront, J. Ding, A. V. Nurmikko. D. C. Grillo, W. Xie, M. Kobayashi, R. L. Gunshor. Optics Lett. 18 (1993) 125.Google Scholar
8 Haase, M. A., Boude, P. F., Hagedom, M. S., Qiu, J., DePuydt, J. M., Cheng, H., Guha, S., Hofler, G. E., and Wu, B. J., Appl. Phys. Lett. 63 (1993) 2315.Google Scholar
9 Guha, S.. DePuydt, J. M., Qiu, J., Hofler, G. E., Haase, M. A., Wu, B. J., and Cheng, H., Appl. Phys. Lett. 63 (1993) 3023.Google Scholar
10 Guha, S.. DePuydt, J. M., Haase, M. A., Qiu, J., and Cheng, H., Appl. Phys. Lett. 63 (1993) 3107.Google Scholar
11 Grillo, D. C., Fan, Y., Ringle, M. D., He, L., Han, J., Gunshor, R. L., Salokatve, A., Jeon, H., Hovinen, M. and Nurmikko, A. V.. this MRS Proceedings entitled “Compound Semiconductor Epitaxy,” (1994).Google Scholar
12 Gunshor, R. L., Kolodziejski, L. A., Melloch, M. R., Vaziri, M., Choi, C., and Otsuka, N., Appl. Phys. Lett. 50 (1987) 200.Google Scholar
13 Lu, K., Fisher, P. A., House, J. L., Ho, E., Coronado, C. A., Petrich, G. S., and Kolodziejski, L. A., J. Vac. Sci. Technol. B12(2) (1994) (forthcoming).Google Scholar
14 Lu, K., House, J. L., Fisher, P. A., Coronado, C. A., Ho, E., Petrich, G. S., and Kolodziejski, L. A., J. Crystal Growth (1994) (forthcoming).Google Scholar