Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-29T20:18:50.712Z Has data issue: false hasContentIssue false

Gas-Phase and Surface Decomposition of Tris-Dimethylamino Arsenic

Published online by Cambridge University Press:  22 February 2011

Ming Xi
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Sateria Salim
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Klavs F. Jensen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
David A. Bohling
Affiliation:
Air Products and Chemicals, Allentown, PA 18195
Get access

Abstract

Gas phase and surface decomposition reactions of a novel arsenic precursor tris- (dimethylamino) arsenic (DMAAs) have been studied. Optical fiber-based Fourier transform infrared spectroscopy was used to monitor, in situ, the gas-phase pyrolysis of DMAAs. Homolysis of the arsenic-nitrogen bond with formation of dimethylamine radicals was identified as the key gas-phase reaction pathway. Formation of methylmethyleneimine from reactions with the decomposition products was directly observed. Surface decomposition of DMAAs on GaAs(100) was investigated by low energy electron diffraction and temperature-programmed reaction under ultra-high vacuum conditions. DMAAs adsorbed onto GaAs(100)-(4x6) was found to decompose with 100% efficiency and two surface reaction pathways were identified. The first reaction channel was homolysis of the arsenic-nitrogen bond with formation of dimethylamine radicals, whereas the second pathway involved a β-hydrogen transfer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1. Braners, A., Kayser, O., Kall, R., Heinecke, H., Balk, P. and Hoffman, H., J. Crystal Growth 93, 7 (1988).Google Scholar
2. Speckman, D. M. and Wendt, J. P., Appl. Phys. Lett. 50, 676 (1987).CrossRefGoogle Scholar
3. Haacke, G., Wakins, S. P. and Burkhard, H., Appl. Phys. Lett. 54, 2029 (1989); S. P. Watkins and G. Haacke, Appl. Phys. Lett. 59, 2263, 1991.Google Scholar
4. Kikkawa, T., Tanaka, H. and Komeno, J., J. Appl. Phys. 67, 7576 (1990).CrossRefGoogle Scholar
5. Lum, R. M., Klingert, J. K., Kisker, D. W., Tennant, D. M., Morris, M. D., Malm, D. L., Kovalchick, J. and Heimbrook, L. A., J. Electron. Mater. 17, 101 (1988).CrossRefGoogle Scholar
6. Jones, A. C., J. Crystal Growth 129, 728 (1993).Google Scholar
7. Abernathy, C. R., Wisk, P. W., Bohling, D. A. and Muhr, C. T., Appl. Phys. Lett. 60, 2421 (1992); J. Crystal Growth 142, 64 (1992).Google Scholar
8. Zimmer, M. H., Hovel, R., Brysch, W., Brauers, A. and Balk, P., J. Crystal Growth 107, 348 (1991).CrossRefGoogle Scholar
9. Fujii, K., Suemnne, I. and Yamanishi, M., Appl. Phys. Lett. 60, 1498 (1992); 61, 2577 (1992); 62, 1420 (1993).CrossRefGoogle Scholar
10. Salim, S., Liu, J. P., Jensen, K. F. and Bohling, D. A., J. Crystal Growth 124, 16 (1992).Google Scholar
11 Hamaoka, K., Suemune, I., Fujii, K., Kishimoto, T. and Yamnishi, M., Japan J. Appl. Phys. 30, L579, (1991).Google Scholar
12. Salim, S., Lim, C.K., Jensen, K.F., and Driver, R., Proc. Int. Soc. Optical Eng. 2069, xxx (1994).Google Scholar
13. Foxon, C. T., Harvly, J. A. and Joyce, B. A., J. Phys. Chem. Solids 34, 1693 (1973).Google Scholar
14. Shagidullum, R. R., Chemova, A. V., Vvnogradava, V. S. and Mukhametov, F. S eds. Atlas of JR Spectra of Organophosphorous Compound, Nauka Publishers, Kluwer Academic Publishers, 1990.CrossRefGoogle Scholar
15. Schrader, B., Ed. Raman/lInfared Atlas of Organic Compound, VCH, 1989.Google Scholar
16. Stolkin, I., Ha, T.-K. and Gunthard, Hs. H., Chem. Phys. 21, 327 (1977).Google Scholar
17. Seetula, J., Kalliorinne, K., and Koskikallio, J., J. Photochem. Photobio., A 43, 31 (1988)CrossRefGoogle Scholar
18. Banse, B. A. and Creighton, J. R., Appl. Phys. Lett. 60, 856 (1992).CrossRefGoogle Scholar
19. Creighton, J. R., J. Vac. Sci. & Technol. A8, 3984 (1990).CrossRefGoogle Scholar
20. Creighton, J. R., Surf. Sci. 234, 287 (1990).CrossRefGoogle Scholar
21. Lin, J.-L. and Bent, B. E., J. Am. Chem. Soc. 115, 2849 (1993).CrossRefGoogle Scholar