Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T13:42:59.537Z Has data issue: false hasContentIssue false

Gate Electrode Effects On Dielectric Breakdown Of SiO2

Published online by Cambridge University Press:  10 February 2011

Akira Toriumi
Affiliation:
ULSI Research Laboratories, Toshiba Corporation Kawasaki 210, Japan (toriumi@ull.rdc.toshiba.co.jp)
Yuichiro Mitani
Affiliation:
ULSI Research Laboratories, Toshiba Corporation Kawasaki 210, Japan (toriumi@ull.rdc.toshiba.co.jp)
Hideki Satake
Affiliation:
ULSI Research Laboratories, Toshiba Corporation Kawasaki 210, Japan (toriumi@ull.rdc.toshiba.co.jp)
Get access

Abstract

We discuss the gate electrode effects on SiO2 degradation in MOS structures. The gate electrode material was poly‐silicon, but the impurity doping procedure was varied in terms of species and concentrations. First, the origin of the substrate hole current observed in n‐MOSFETs, by injecting electrons from the silicon substrate, is discussed in terms of oxide thickness and gate electrode doping species, because the dielectric breakdown is closely related to the total hole fluence in the oxide. The effects of the gate electrode on the oxide network structure and on the Si/SiO2 interface are also experimentally investigated. Finally, the experimental results obtained for Qbd of different gate electrode MOSFETs are shown, including the polarity dependence of Qbd. Furthermore, the percolation analysis to explain the polarity dependence is introduced, since the dielectric breakdown process is really stochastic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Momose, H. S., Ono, M., Yoshitomi, T., Ohguro, T., Nakamura, S., Saito, M. and Iwai, H., Tech. Dig. IEDM 94, p.593, (1994).Google Scholar
2 Wristers, D., Wang, H. H., Han, L. K., Lin, C., Chen, T. S, Kwong, D. L., and Fulford, J., Proc. 96–1, The Elecrochemical Society (1996), pp. 733743, Pennington.Google Scholar
3 Satake, H., and Toriumi, A., Appl. Phys. Lett. 66, 3516, (1995).Google Scholar
4 Koga, J., Takagi, S. and Toriumi, A., Tech Dig. IEDM 94, pp. 475478 (1994).Google Scholar
5 Chen, I. C., Holland, S., Young, K. K., and Hu, C., Appl. Phys. Lett. 49, 669 (1986).Google Scholar
6 Weinberg, Z. A. and Fischetti, M. V., J. Appl. Phys. 57, 443, (1985).Google Scholar
7 DiMaria, D. J., Cartier, E., and Buchanan, D. A., J. Appl. Phys., 80, 304, (1996).Google Scholar
8 Chang, C., Hu, C., and Brodersen, R. W., J. Appl. Phys., 57, 302, (1985).Google Scholar
9 Kobayashi, K., Teramoto, A., Hirayama, M., and Fujita, Y., J. Appl. Phys. 77, 3277, (1995).Google Scholar
10 Toriumi, A., and Iwase, M., Ext. Abst. the 19th Conf. Solid State Devices and Material, p.351, (1987).Google Scholar
11 Toriumi, A., and Iwase, M., Wada, T., and Taniguchi, K., Tech. Dig. IEDM 86, p.382, (1986).Google Scholar
12 Yasuda, N., (unpublished).Google Scholar
13 Naruke, K., Taguchi, S., and Wada, M., Tech. Dig. IEDM 88, p. 424, (1988).Google Scholar
14 Yasuda, N., Takagi, S., and Toriumi, A., to be published in Appl. Surf. Sci. Google Scholar
15 Stauffer, D. and Aharony, A., “Introduction to Percolation Theory2nd Ed. Taylor & Francis (London) 1992.Google Scholar
16 Tanamoto, T., and Toriumi, A., Ext. Abst. Int. Conf. Solid State and Device Materials, p. 368, 1996 (Yokohama); to be published in Jpn. J. Appl. Phys. (1997).Google Scholar