Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-27T22:40:10.221Z Has data issue: false hasContentIssue false

Gate-All-Around (GAA) Fully Depleted (FD) Cantilever Channel MOSFET with High-k Dielectric and Metal Gate

Published online by Cambridge University Press:  01 February 2011

Sagnik Dey
Affiliation:
s-dey@ti.com, University of Texas at Austin, Electrical and Computer Engineering, Microelectronics Research Center,, 10100 Burnet Rd. Bldg, Austin, TX, 78758, United States, 512-471-8658, 512-471-5625
Se-Hoon Lee
Affiliation:
slee2@ece.utexas.edu, University of Texas at Austin, Electrical and Computer Engg, Austin, TX, 78758, United States
Sachin V. Joshi
Affiliation:
joshi@ece.utexas.edu, University of Texas at Austin, Electrical and Computer Engg, Austin, TX, 78758, United States
Prashant Majhi
Affiliation:
Prashant.Majhi@SEMATECH.Org, Sematech, Austin, TX, 78741, United States
Sanjay K. Banerjee
Affiliation:
banerjee@ece.utexas.edu, University of Texas at Austin, Electrical and Computer Engg, Austin, TX, 78758, United States
Get access

Abstract

A MOSFET formed by a Si cantilever channel suspended between source/drain “anchors” wrapped all-around by high-κ dielectric and metal gate is demonstrated. The device shows excellent subthreshold characteristics and low leakage currents due to the fully depleted body and the gate-all-around architecture implemented with a high-κ dielectric and metal gate. At the same time this also allows a high drive current due to mobility enhancements arising from volume inversion of the cantilever channel such that a large ION/IOFF is achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.The International Technology Roadmap for semiconductors, Emerging Research Devices, 2003.Google Scholar
2. Wann, C. H., Noda, K., Tanaka, T., Yoshida, M., Hu, C., IEEE Trans. Electron Devices, 43, 1742 (1996).Google Scholar
3. Wong, H. S., Frank, D. J., Taur, Y., and Stork, J. M. C., IEEE IEDM Tech. Digest, 17, 747 (1994).Google Scholar
4. Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., King, T.J., Bokor, J., and Hu, C., IEEE Trans. Electron Devices, 47, 2320 (2000).Google Scholar
5. Young, S. J., Young, C. W., Park, J.H., Lee, J.D., Park, B.G., IEEE Trans. Nanotechnology, 5, 186 (2006).Google Scholar
6. Chin, A., Liao, C.C., Lu, C.H., Chen, W.J., Tsai, C., VLSI Tech Dig., 135 (1999).Google Scholar
7. Zhu, W., Han, J.P., Ma, T.P., IEEE Trans. Electron Devices, 51, 98 (2004).Google Scholar
8. Fischetti, M., Neumayer, D., and Carttier, E., J. Appl. Phys., 90, 4587 (2001).Google Scholar
9. Balestra, F., Cristoloveanu, S., Benachir, M., Brini, J., Elewa, T., IEEE Elec Dev Lett., 8, 410 (1987).Google Scholar
10. Quevedo-Lopez, M.A., Krishnan, S.A., Kirsch, D., Li, C.H.J, Sim, J.H., Huffman, C., Peterson, J. J., Lee, B.H., Pant, G., Gnade, B.E., Kim, M.J., Wallace, R.M., Guo, D., Bu, H., Ma, T.P., IEEE IEDM Tech. Digest, 28, 425 (2005).Google Scholar
11. Kizilyalli, I.C., Roy, P.K., Baumanda, F., Huang, R.Y., Hwang, D., Chacon, C., Irwin, R., Ma, Y., Alers, G. VLSI Tech Dig., 216 (1998).Google Scholar
12.Synopsys Inc., Taurus-Device User Guide, Version 2003.06, 2003.Google Scholar
13. Paasch, G and Ubensee, H Phys. Status Solidi. b 113 165–78 (1982).Google Scholar
14. Chen, K., Wann, H. Clement, Dunster, J., Ko, P. K., Hu, C. and Yoshida, M., Solid-State Electronics, 39, 1515 (1996).Google Scholar