Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-10-02T18:12:28.046Z Has data issue: false hasContentIssue false

Generation of Hole Traps in Silicon Dioxide Under Fowler-Nordheim Stress

Published online by Cambridge University Press:  15 February 2011

T. Brożek
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, CA 90095
Y. D. Chan
Affiliation:
SEMATECH, Austin TX 7874 1(on assignment from Rockwell Int., Newport Beach, CA)
C. R. Viswanathan
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, CA 90095
Get access

Abstract

High field electron injection in silicon oxide layers in metal-oxide-semiconductor system is widely known to degrade thin silicon oxide layers and the silicon-oxide interface, eventually leading to catastrophic oxide breakdown. In this work we report generation of hole traps under high-field stressing of thermal silicon dioxide layers on silicon. Excess hole trapping on newly generated hole traps is observed by substrate hot-hole injection in 9 nm oxide PMOS transistors after high-field Fowler-Nordheim stress followed by standard post-metallization annealing in nitrogen. The concentration of generated traps is stress-polarity dependent and increases with electron fluence during degrading stress. Relaxation behavior under switching oxide fields indicates that the nature of hole trapping sites is different from anomalous positive charge centers. A correlation of density of generated hole traps with the amount of generated electron traps shows that both types of traps are effectively generated in the oxide layer under Fowler-Nordheim tunneling electron injection.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 DiMaria, D. J., in: Proc. of Int. Topical Conference The Physics of SiO2 and Its Interfaces, ed. Pantelides, S. T., Pergamon 1978, p. 160.Google Scholar
2. Liang, M. S., et al. , IEEE Trans. Electron Dev., vol. 31, 1238 (1984).Google Scholar
3. Heyns, M. M. and Schwerin, A. v., in: Proc. of 7th Int. Conf Insulating Films on Semiconductors, ed. Eccleston, W. and Uren, M., Hilger, A., Bristol 1991, p. 73.Google Scholar
4. Trombetta, L. P., Feigl, F. J., and Zeto, R. J., J. Appl. Phys., vol. 69, 2512 (1991).Google Scholar
5. DiMaria, D. J., Cartier, E., and Arnold, D., J. Appl. Phys., vol. 73, 3367 (1993).Google Scholar
6. Roh, Y., Trombetta, L., and Han, J., J. Electrochem. Soc., vol. 142, 1015 (1995).Google Scholar
7. Dumin, D. J., et al. , IEEE Trans. Electron Dev., vol. 42, 760 (1995).Google Scholar
8. Feigl, F. J., Fowler, W. B., and Yip, K. L., Solid State Commun., vol. 14, 225 (1974).Google Scholar
9. Lenahan, P. M. and Dressendorfer, P. V., J. Appl. Phys., vol. 55, 3495 (1984).Google Scholar
10. Devine, R. A. B. and Golanski, A., J. Appl. Phys., vol. 54, 3833 (1983).Google Scholar
11. Takahashi, T., Triplett, B. B., Yokogawa, K., and Sugano, T., Appl. Phys. Lett., vol. 51, 1334 (1987).Google Scholar
12. Conley, J. F. Jr., et al. , J. Appl. Phys., vol. 76, 2872 (1994).Google Scholar
13. Heyns, M. M. and De Keermaecker, R. F., Mat. Res. Symp. Proc., vol. 105, pp. 205 (1988).Google Scholar
14. DiMaria, D. J., IEEE Electron Dev. Lett., vol. 16, 184 (1995).Google Scholar
15. Lee, K. H. and Campbell, S. A., J. Appl. Phys., vol. 73, 4434 (1993).Google Scholar
16. Tzou, J. J., Sun, J. Y.-C., Sah, C.-T., J. Appl. Phys., vol. 55, 846 (1984).Google Scholar
17. Afanas'ev, A. A., et al. , Microelectronic Eng., voi. 28, 43 (1995).Google Scholar
18. Brożek, T., Chan, Y. D., Viswanathan, C. R., Jap. J. Appl. Phys., vol. 34, 969 (1995).Google Scholar
19. Verwey, J. F., J. Appl. Phys., vol. 44, 2681 (1973).Google Scholar
20. Stivers, A. R. and Sah, C.-T., J. Appl. Phys., vol. 51, 6292 (1980).Google Scholar
21. Kíng, J. C. and Hu, C., IEEE Electron Dev. Lett., vol. 15, 475 (1994).Google Scholar
22. Ning, T. H., J. Appl. Phys., vol. 47, 1079 (1976).Google Scholar
23. Ogawa, S. and Shiono, N., Appl. Phys Lett., vol. 61, 807 (1992).Google Scholar
24. DiMaria, D. J., et al. , J. Appl. Phys., vol. 77, 2032 (1995).Google Scholar
25. Khosru, Q. D. M., et al. , J. Appl. Phys., vol. 77, 4494 (1995).Google Scholar
26. Meinertzhagen, A., et al. , J. Appl. Phys., vol. 79, 2549 (1996).Google Scholar
27. Fleetwood, D. M., et al. , J. Appl. Phys., vol. 73, 5058 (1993).Google Scholar
28. Freitag, R. K., Brown, D. B., and Dozier, C. M., IEEE Trans. Nucl. Sci., vol. 41, 1828 (1994).Google Scholar
29. Lelis, A. J. and Oldham, T. R., IEEE Trans. Nucl. Sci., vol. 41, 1835 (1994).Google Scholar
30. Li, X., et al. , Proc. IEEE Int. Rel. Phys. Symp., 1995, p. 260.Google Scholar
31. Li, X., et al. , J. of Vac. Sci. & Technol. (B), vol. 14, 571 (1996).Google Scholar