Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-24T18:06:20.376Z Has data issue: false hasContentIssue false

Glass and glass-ceramic matrix composites: from model systems to useful materials

Published online by Cambridge University Press:  14 March 2011

Aldo R. Boccaccini
Affiliation:
Department of Materials, Imperial College, London SW7 2BP, UK
Cengiz Kaya
Affiliation:
IRC in Materials Processing, The University of Birmingham, Birmingham B15 2TT, UK
Get access

Abstract

By reinforcing glass and glass-ceramic matrices with ceramic or metallic fibres, advanced composite materials with improved mechanical properties can be fabricated. These composites were originally developed as model systems for laboratory-scale experiments. Due to their remarkable thermomechanical properties, however, the materials are candidate for a variety of technical applications. The present contribution is based on an extensive review of the available literature on these materials, accumulated in the last 30 years, focusing on manufacturing techniques. The literature analysis reveals that several challenges related to the composites fabrication remain for future developments. In particular, it is shown that relative limited R&D work has been carried out so far in the area of manufacturing of engineering components and structures having complex geometry and large dimensions. The application of electrophoretic deposition techniques in order to manufacture three-dimensional components, e.g. tubes, may represent a considerable improvement in this regard. The final goal of this report is to generate a broader interest in glass and glass-ceramic matrix composites both in the scientific and industrial communities, so that the high technological potential of these materials can be wider exploited.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rawlings, R. D., Composites 25, 372 (1994).Google Scholar
2. Crivelli-Visconti, I., Cooper, G. A., Nature 221, 754 (1969).Google Scholar
3. Boccaccini, A. R., J. Ceram. Soc. Japan 109 [7], S99 (2001).Google Scholar
4. Boccaccini, A. R., Glass Technol. (2001) (in press).Google Scholar
5. Levitt, S. R., J. Mat. Sci. 8, 793 (1973).Google Scholar
6. Sambell, R. A., Bowen, D. H., Phillips, D. C., J. Mat. Sci. 7, 676 (1972).Google Scholar
7. Bianchi, V., Fournier, P., Platon, F., Reynaud, P., J. Europ. Ceram. Soc. 19, 581 (1999).Google Scholar
8. Boccaccini, A. R., Gevorkian, G., Glastech. Ber. Glass Science and Technol. 74, 17 (2001).Google Scholar
9. Yajima, S., Okamura, K., Hayashi, J., Omori, M., J. Am. Ceram. Soc. 59, 324 (1976).Google Scholar
10. Donald, I. W., Key Eng. Mat. 108–110, 123 (1995).Google Scholar
11. Prewo, K. M., Brennan, J., Layden, G. K., Ceram. Bull. 65, 305 (1986).Google Scholar
12. Beier, W., Heinz, J., Pannhorst, W., VDI Berichte 1021, 255 (1993).Google Scholar
13. Ishikawa, T., Kajii, S., Matsunaga, K., Hogami, T., Kohtoku, Y., J. Mat. Sci. 30, 6218 (1995).Google Scholar
14. Zhang, E., Thompson, D. P., J. Mat. Sci. 31, 6423 (1996).Google Scholar
15. Sun, Y., Singh, R. N., Acta Mater. 46, 1657 (1998).Google Scholar
16. Bansal, N. P., Mat. Sci. Eng. A220, 129 (1996).Google Scholar
17. Bansal, N. P., Mat. Sci. Eng. A231, 117 (1997).Google Scholar
18. Michalske, T. A., Hellmann, J. R., J. Am. Ceram. Soc. 71, 725 (1988).Google Scholar
19. Borom, M. P., Johnson, C. A., J. Am. Ceram. Soc. 70, 1 (1987).Google Scholar
20. Chawla, K. K., Ferber, M. K., Xu, Z. R., Venkatesh, R., Mat. Sci. Eng. A162, 35 (1993).Google Scholar
21. Iba, H., Naganuma, T., Matsumura, K., Kagawa, Y., J. Mat. Sci. 34, 5701 (1999).Google Scholar
22. Fankhanel, B., Muller, E., Weise, K., Marx, G., Key Eng. Mat. 206–213, 1109 (2002).Google Scholar
23. Huelsenberg, D., Feehling, P., Mache, T., Winkler, V., Raab, D., Boccaccini, A. R., in Verbundwerkstoffe und Werkstoffverbunde, edited by Wielage, B., Leonhardt, G., (Wiley VCH, Weinheim, Germany, 2001) pp. 365369.Google Scholar
24. Ducheyne, P., Hench, L. L., J. Mat. Sci. 17, 595 (1982).Google Scholar
25. Donald, I. W., Metcalfe, B. L., J. Mat. Sci. 31, 1139 (1996).Google Scholar
26. Donald, I. W., Metcalfe, B. L., Bye, A. D., J. Mat. Sci. Lett. 7, 964 (1988).Google Scholar
27. Rudovskij, A. E., Sarkisov, P. D., Ivashin, A. A., Budov, V. V., in Ceramic-and Carbon-Matrix Composites, edited by Trefilov, V. I., (Chapman and Hall, London, 1995) pp. 255285.Google Scholar
28. Boccaccini, A. R., Ovenstone, J., Trusty, P. A., Applied Composite Materials 4, 145 (1997).Google Scholar
29. Boccaccini, A. R., Kaya, C., Chawla, K. K., Composites Part A 32, 997 (2001).Google Scholar
30. Prewo, K. M., in Mat. Sci. Research Vol. 20: Tailoring Multiphase and Composite Ceramics, edited by Tressler, R. E., et al. (Plenum Press, New York 1986) pp. 529547.Google Scholar
31. Lambrinou, K., Biest, O. Van der, in 9th CIMTEC, Symposium V, edited by Vincenzini, P. (Techna Srl., 1999) pp. 163168.Google Scholar
32. Reich, Ch., Brückner, R., Comp. Sci. Technol. 57, 533 (1997).Google Scholar
33. Shin, H.-H., Speyer, R. F., J. Mat. Sci. 29, 3630 (1994).Google Scholar
34. Zhao, C., Lambrinou, K., Biest, O. Van der, J. Mat. Sci. 34, 1865 (1999).Google Scholar
35. Cho, K., Kerans, R. J., Jepsen, K. A., Ceram Eng. Sci. Proc. 15, 815 (1995).Google Scholar
36. Gustafson, C. M., Dutton, R. E., Kerans, R. J., J. Am. Ceram. Soc. 78, 1423 (1995).Google Scholar
37. Chawla, K. K., Ceramic Matrix Composites, (Chapman and Hall, London, 1993) p. 128.Google Scholar
38. Brennan, J. J., in Fibre Reinforced Ceramic Composites, Materials, Processing and Technology, edited by Mazdiyasni, K., (Noyes Publications, New Jersey, 1990) pp. 222259.Google Scholar
39. Larnac, G., Lespade, P., Peres, P., Donzac, J. M., in High Temperature Ceramic Matrix Composites, Vol. 1, edited. by Naslain, R., et al. (Woodhead Publ. Ltd., 1993) pp. 777784.Google Scholar
40. Briggs, A., Davidge, R. W., Mat. Sci. Eng. A109, 363 (1989).Google Scholar
41. Beier, W., Schott Information 73, 3 (1995).Google Scholar
42. Goettler, R. W., US Patent Nr. 5,122,176, Jun. 16, 1992.Google Scholar
43. Hinklin, T. R., Neo, S. S., Chew, K. W., Laine, R. M., Ceram. Trans. 74, 117 (1996).Google Scholar
44. Neo, S. S., Hinklin, T. R., Chew, K. W., Laine, R. M., J. Am. Ceram. Soc. (2001) (in press).Google Scholar
45. Johnson, S. M., Rowcliffe, D. J., Cinibulk, M. K., in: Ceramic Microstructures ’86: Role of Interfaces, edited by Pask, J. and Evans, A. G., (Plenum Press, N. York, 1987) pp. 633641.Google Scholar
46. Roeder, E., Klein, N., Langhans, K., Glastech. Ber. 61, 143 (1988).Google Scholar
47. Cullum, G. H., in Handbook on Continuous Fiber-Reinforced Ceramic Matrix Composites, edited by Lehman, R. L., El-Rahaiby, S. K., Wachtman, J. B., (Purdue University Press, West Lafayette, USA, 1995) pp. 185204.Google Scholar
48. Mazdiyasni, K. S., Mat. Sci. Eng. A144, 83 (1991).Google Scholar
49. Harris, B., Cooke, R. G., Hammett, F. W., Russell-Floyd, R. S., Ind. Ceram. 18, 33 (1998).Google Scholar
50. Colomban, Ph., Lapous, N., Comp. Sci. Technol. 56, 739 (1996).Google Scholar
51. Pannhorst, W., Spallek, M., Brückner, R., Hegeler, H., Reich, C., Grathwohl, G., Meier, B., Spelmann, D., Ceram. Eng. Sci. Proc. 11 [7-8], 947 (1990).Google Scholar
52. Hegeler, H., Brückner, R., J. Mat. Sci. 24, 1191 (1989).Google Scholar
53. Kaya, C., Boccaccini, A. R., Trusty, P. A., J. Europ. Ceram. Soc. 19, 2859 (1999).Google Scholar
54. Kaya, C., Boccaccini, A. R., Chawla, K. K., J. Am. Ceram. Soc. 83, 1885 (2000).Google Scholar
55. Trusty, P. A., Boccaccini, A. R., Applied Composite Materials 5, 207 (1998).Google Scholar
56. Kaya, C., Kaya, F., Boccaccini, A. R., J. Am. Ceram. Soc. (2001) (submitted).Google Scholar
57. Zhou, Y., Biest, O. Van der, Sil. Indust. 7–8, 163 (1996).Google Scholar