Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T04:03:48.050Z Has data issue: false hasContentIssue false

Glass Transition Temperature in Confined Polymers

Published online by Cambridge University Press:  26 February 2011

Rahmi Ozisik
Affiliation:
ozisik@rpi.edu, Rensselaer Polytechnic Institute, Materials Science and Engineering, 110 Eight Street, Troy, NY, 12180, United States
Tong Liu
Affiliation:
liut@rpi.edu, Rensselaer Polytechnic Institute, Materials Science and Engineering, Troy, NY, 12180, United States
Richard W. Siegel
Affiliation:
rwsiegel@rpi.edu, Rensselaer Polytechnic Institute, Materials Science and Engineering, Troy, NY, 12180, United States
Get access

Abstract

Glass transition temperature of polyetherimide (PEI) thin films and nanoporous PEI samples was investigated using differential scanning calorimetry. In both of these systems, the glass transition temperature decreased with respect to the bulk value. In the nanoporous system, scanning electron microscope images were used to characterize pore size distribution, and Monte Carlo simulations were performed to calculate the nearest neighbor pore-to-pore distances. Pore-to-pore distances and thin film thickness values were used to establish a quantitative analogy between thin films and nanoporous system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Adams, G.; Gibbs, J. J. Chem. Phys. 1965, 43, 139.Google Scholar
2. Schönhals, A.; Goering, H.; Schick, Ch. J. Non-Crystalline Solids 2002, 305, 140.Google Scholar
3. Keddie, J. L.; Jones, R. A. L.; Cory, R. A. Europhys. Lett. 1994, 27, 59.Google Scholar
4. Keddie, J. L.; Jones, R. A.; Cory, R. A. Faraday Discuss. 1994, 98, 219.Google Scholar
5. DeMaggio, G. B.; Frieze, W. E.; Gidley, D. W.; Zhu, M.; Hristov, H. A.; Yee, A. F. Phys. Rev. Lett. 1997, 78, 1524.Google Scholar
6. Fryer, D. S.; Peters, R. D.; Kim, E. J.; Tomaszewski, J. E.; White, C. C.; Wu, W. L. Macromolecules 2001, 34, 5627.10.1021/ma001932qGoogle Scholar
7. Mattsson, J.; Forrest, J. A.; Borjesson, L. Phys. Rev. E 2000, 62, 5187.Google Scholar
8. Forrest, J. A.; Dalnoki-Veress, K.; Dutcher, J. R. Phys. Rev. E 1997, 56, 5705.Google Scholar
9. Forrest, J. A.; Mattsson, J. Phys. Rev. E 2000, 61, R53.Google Scholar
10. Ellison, C. J.; Torkelson, J. M. Nature Mater. 2003, 2, 695.Google Scholar
11. Jean, Y. C.; Zhang, R.; Cao, H.; Yuan, J. P.; Huang, C. M.; Nielsen, B.; Asoka-Kumar, P. Phys. Rev. B 1997, 56, R8459.Google Scholar
12. Bliznyuk, V. N.; Assender, H. E.; Briggs, G. A. D. Macromolecules 2002, 35, 6613.Google Scholar
13. Sillis, S.; Overney, R. M. J. Chem. Phys. 2004, 120, 5334.Google Scholar
14. Long, D.; Lequeux, F. Eur. Phys. J. E 2001, 4, 371.10.1007/s101890170120Google Scholar
15. De Lorenzo, M. L.; Errico, M. E.; Avella, M. J. Mater. Sci. 2002, 37, 2351.Google Scholar
16. Pham, J. Q.; Mitchell, C. A.; Bahr, J. L.; Tour, J. M.; Krishanamoorti, R.; Green, P. E. J. Polym. Sci.: Part B: Polym. Phys. 2003, 41, 3339.Google Scholar
17. Ash, B. J.; Schadler, L. S.; Siegel, R.W. Mater. Lett. 2002, 55, 83.Google Scholar
18. Bansal, A.; Yang, H.; Li, C.; Cho, K.; Benicewicz, B. C.; Kumar, S. K.; Schadler, L. S. Nature Mater. 2005, 4, 693.Google Scholar
19. Liu, T.; Ozisik, R.; Siegel, R.W., J. Polym. Sci., Part B: Polym. Phys., accepted for publication.Google Scholar
20. Ash, B. J.; Siegel, R. W.; Schadler, L. S. J. Polym. Sci.: Part B: Polym. Phys. 2004, 42, 4371.Google Scholar
21. Paul, D. R.; Newman, S., Polymer Blends, Academic: New York, USA, 1978.Google Scholar
22. Li, X.; Han, Y.; An, L. Polymer 2003, 44, 8155.10.1016/j.polymer.2003.10.012Google Scholar
23. Moons, E. J. Phys.: Condens. Matter 2002, 14, 12235.Google Scholar
24. Liu, T.; Ozisik, R.; Siegel, R.W., Thin Solid Films, accepted for publication.Google Scholar