Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T18:29:36.411Z Has data issue: false hasContentIssue false

Grain-Boundary Design of L12 Ordered Intermetallic Alloys

Published online by Cambridge University Press:  26 February 2011

C. T. Liu*
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6115
Get access

Abstract

This paper summarizes recent research on intergranular fracture and alloy design of L12 ordered Ni3X intermetallics. The grain boundaries in Ni3AI, Ni3Ga, Ni3Si, and Ni3Ge are intrinsically brittle, and boron additions are effective in ductilizing the first three alloys but not in Ni3Ge The beneficial role of boron is to increase grain-boundary cohesive strength, to enhance plastic flow in the boundary region, and to disorder grain boundaries. Boron is ineffective in ductilizing Ni3X alloys with × > 25%. The room-temperature ductility of undoped Ni3Al can be improved also by change in grain shape from equiaxed to columnar.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Watanabe, T., Res. Mechanica 11(1)), 47 (1984).Google Scholar
[2] Grain Boundary Structure and Properties, ed. Chadwick, G. A. and Smith, D. A., Academic Press, London, 1976.Google Scholar
[3] Ruhle, M., Balluffi, R. W., Fischmeister, H., and Sass, S. L., Structure and Properties of Internal Interfaces, J. dePhysique C4 (1985).Google Scholar
[4] Grain Boundary Structure and Related Phenomena, Suppl. Trans. Japan Inst. Metals 27 (1986).Google Scholar
[5] Livingston, J. L., p. 165 in Grain Boundaries in Engineering Materials, ed. Walter, J. L., Westbrook, J. H., and Woodford, D. A., Claitor's Publ. Div., Baton Rouge, 1975.Google Scholar
[6] McMahon, C. J., Jr., Mater. Sci. Eng. 25, 233 (1976).Google Scholar
[7] Watanabe, T., Suppl. Trans. JIM. 27, 73 (1986).Google Scholar
[8] Gleiter, H. and Chalmers, B., Prog. in Mater. Sci., Pergamon Press, vol. 16, 1972.Google Scholar
[9] Embury, J. D., p. 331 in Strengthening Methods in Crystals, ed. Kelly, A. and Nicholson, R. B., Elsevier Publ., 1971.Google Scholar
[10] Grain Boundary Structure and Kinetics, ed. Balluffi, R. W., ASM, 1980.Google Scholar
[11] Sass, S. L., private communication, 1986.Google Scholar
[12] Sickafus, K. and Sass, S. L., Scr. Metall. 18, 165–68 (1984).Google Scholar
[13] High-Temperature Ordered Intermetallics Alloys, ed. Koch, C. C., Liu, C. T., and Stoloff, N. S., Materials Research Society, Pittsburgh, PA, 1985.Google Scholar
[14] Ordered Intermetallic Alloys II, ed. Stoloff, N. S., Koch, C. C., Liu, C. T., and Izumi, O., Materials Research Society, Pittsburgh, PA, 1987.Google Scholar
[15] Grala, E. M., p. 358 in Mechanical Properties of Intermetallic Compounds, Wiley, New York, 1960.Google Scholar
[16] Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 41, 170 (1977).Google Scholar
[17] Aoki, K. and Izumi, O., Trans. Japan Inst. Metals 19, 203 (1978).Google Scholar
[18] Moskovich, R., J. Mater. Sci. 13, 1901 (1978).Google Scholar
[19] Seybolt, A. V. and Westbrook, J. H., Acta Metall. 12, 449 (1964).CrossRefGoogle Scholar
[20] Stein, D. F. and Heldt, L. A., pp. 239–60 in Interfacial Segregation, ed. Johnson, W. C. and Blakely, J. M., ASM, Metals Park, Ohio, 1977.Google Scholar
[21] Liu, C. T., White, C. L., Koch, C. C., and Lee, E. H., p. 32 in Proc. Symp. High-Temperature Materials Chemistry II, Electrochem. Soc., Inc., 1983.Google Scholar
[22] Liu, C. T., White, C. L., and Horton, J. A., Acta Metall. 33, 213–19 (1985).Google Scholar
[23] Takasugi, T., George, E. P., Pope, D. P., and Izumi, O., Scr. Metall. 19, 551–56 (1985).Google Scholar
[24] Ogura, T., Hanada, S., Masumoto, T., and Izumi, O., Metall. Trans. A 16A, 441–43 (1985).Google Scholar
[25] Oliver, W. C. and White, C. L., pp. 241–46 in High-Temperature Ordered Intermetallic Alloys II, Materials Research Society, Pittsburgh, PA, 1987.Google Scholar
[26] White, C. L. and Stein, D. F., Metall. Trans. A 9A, 13 (1978).CrossRefGoogle Scholar
[27] Takasugi, T. and Izumi, O., Acta Metall. 33, 1247–58 (1985).Google Scholar
[28] Takasugi, T., Izumi, O., and Masahashi, N., Acta Metall. 33, 1259 (1985).Google Scholar
[29] Taub, A. I., Briant, C. L., Huang, S. C., Chang, K. M., and Jackson, M. R., Scr. Metall. 20, 129–34 (1986).CrossRefGoogle Scholar
[30] Taub, A. I. and Briant, C. L., p. 343 in High-Temperature Ordered Intermetallic Alloys II, Materials Research Society, Pittsburgh, PA, 1987.Google Scholar
[31] Taub, A. I. and Briant, C. L., Acta. Metall. 35, 15971603 (1987).CrossRefGoogle Scholar
[32] Aoki, K. and Izumi, O., Nippon Kinzoku Gakkaishi 43, 1190 (1979).Google Scholar
[33] Horton, J. A., Liu, C. T., and Santella, M. L., Metall. Trans. A 18A, 1265–77 (1987).CrossRefGoogle Scholar
[34] Takasugi, T., Masahashi, N., and Izumi, O., Scr. Metall. 20, 1317 (1986).Google Scholar
[35] Huang, S. C., Briant, C. L., Chang, K. M., Taub, A. I., and Hall, E. L., J. Mater. Res. 1, 6067 (1986).Google Scholar
[36] Huang, S. C., Taub, A. I., and Chang, K. M., Acta Metall. 32, 1703 (1984).Google Scholar
[37] Chang, K. M., Huang, S. C., and Taub, A. I., p. 401 in High-Temperature Ordered Intermetallic Alloys II, Materials Research Society, Pittsburgh, PA, 1987.Google Scholar
[38] Taub, A. I., Huang, S. C., and Chang, K. M., Metall. Trans. A 15A, 399 (1984).Google Scholar
[39] Inouye, A., Tomioka, H., and Masumoto, T., Metall. Trans. A 14A, 1367 (1983).Google Scholar
[40] Inouye, A., Masumoto, T., Tomioka, H., and Yano, N., Int. J. Rapid Solid. 1, 115–42 (1985).Google Scholar
[41] Liu, C. T., pp. 355–68 in High-Temperature Ordered Intermetallic Alloys II, Materials Research Society, Pittsburgh, PA, 1987.Google Scholar
[42] Takeyama, M. and Liu, C. T., unpublished results, ORNL, 1988.Google Scholar
[43] Crimp, M. A. and Vedula, K., J. Mater. Sci. 78, 193 (1986).Google Scholar
[44] Yamaguchi, M., Kyoto University, Japan, private communication, 1987.Google Scholar
[45] Oliver, W. C., private communication, ORNL, 1987.Google Scholar
[46] White, C. L., Padgett, R. A., Liu, C. T., and Yalisove, S. M., Scr. Metall. 18, 1417–20 (1984).CrossRefGoogle Scholar
[47] Choudhury, A., White, C. L., and Brooks, C. R., Scr. Metall. 20, 1061 (1986).Google Scholar
[48] Rice, J. R., pp. 455–65 in The Effect of Hydrogen on the Behavior of Metals, AIME publication, New York, New York, 1976.Google Scholar
[49] Painter, G. S., and Averill, F. W., Phys. Rev. Lett. 58, 234 (1987).Google Scholar
[50] Eberhart, M. E. and Vvedinsky, D. D., Phys. Rev. Lett. 58, 61 (1987).Google Scholar
[51] Chen, S. P., Voter, A. F., and Srolovitz, D. J., to be published in J. de Physique, 1988.Google Scholar
[52] Bond, G. M., Robertson, I. M., and Birnbaum, H. K., J. Mater. Res. 2, 436–40 (1987).Google Scholar
[53] Schulson, E. M., Weihs, T. P., Viens, D. V., and Baker, I., Acta Metall. 33, 1587 (1985).Google Scholar
[54] Khadkikar, P. S., Vedula, K., and Shale, B. S., Metall. Trans. 18A, 425 (1987).CrossRefGoogle Scholar
[55] Baker, I., Schulson, E. M., and Horton, J. A., Acta Metall. 35, 1533–41 (1987).Google Scholar
[56] Baker, I., Schulson, E. M., and Michael, J. R., to be published in Philos. Mag., 1988.Google Scholar
[57] Brenner, S. S., University of Pittsburgh, unpublished results, 1987.Google Scholar
[58] Binary Phase Diagrams, ed. Massalski, T. B., ASM publication, 1986.Google Scholar
[59] King, A. H. and Yoo, M. H., p. 99 in High-Temperature Ordered Intermetallic Alloys II, Materials Research Society, Pittsburgh, PA, 1987.Google Scholar
[60] MacKenzie, R.A.D., Vaudin, M. D., and Sass, S. L., to be published in this proceedings, 1988.Google Scholar
[61] Hanada, S., Ogura, T., Watanabe, S., Izumi, O., and Masumoto, T., Acta Metall. 34, 1321 (1986).Google Scholar
[62] Farkas, D., Lewus, M. O., and Ramgarajan, V., to be published in this proceedings, 1988.Google Scholar
[63] Weihs, T. P., Zinoviev, V., Viens, D. V., and Schulson, E. M., Acta Metall. 35, 1109–18 (1987).Google Scholar
[64] Liu, C. T. and Oliver, B. F., unpublished results, 1987.Google Scholar
[65] Taub, A. I., Huang, S. C., and Chang, K. M., p. 57 in Failure Mechanisms in High Performance Materials, Proc. 39th Meeting of Mechanical Failures Prevention Group, ed. Warly, J.G., Shives, T. R., and Smith, J. H., Cambridge University Press, 1985.Google Scholar
[66] Liu, C. T., unpublished results, ORNL, 1987.Google Scholar
[67] Horton, J. A. and Miller, M. K., unpublished results, ORNL, 1987.Google Scholar
[68] DasGupta, A., Smedskjaer, L. C., Legnini, D. G., and Siegel, R. W., J. Mater. Lett. 3, 457–61 (1985).Google Scholar