Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-19T06:27:04.169Z Has data issue: false hasContentIssue false

Grating Coupled Waveguide Biosensor Based on Porous Silicon

Published online by Cambridge University Press:  21 March 2011

Xing Wei
Affiliation:
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
Sharon M. Weiss
Affiliation:
Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
Get access

Abstract

Porous silicon waveguides with integrated porous silicon grating couplers are demonstrated as small molecule biosensors. Two fabrication methods are presented for the grating couplers: standard electron beam lithography with reactive ion etching and a new technique based on direct imprinting of porous substrates. Although the gratings fabricated using standard lithographic techniques have steeper sidewalls and enable a larger available sensing surface area inside the waveguide, the imprinted gratings have the advantage of rapid and low-cost fabrication. Both the lithographically and imprinted sensors are shown to have waveguide losses on the order of 10 dB/cm, and both are demonstrated for detection of 16mer nucleic acids.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Uhlir, A., Bell Syst. Tech. J. 35, 333347 (1956).Google Scholar
2. Lin, V. S. Y., Motesharei, K., Dancil, K. P. S., Sailor, M. J. and Ghadiri, M. R., Science 278 (5339), 840-843 (1997).Google Scholar
3. Chan, S., Horner, S. R., Fauchet, P. M. and Miller, B. L., J Am Chem Soc 123 (47), 1179711798 (2001).Google Scholar
4. Jane, A., Dronov, R., Hodges, A. and Voelcker, N. H., Trends Biotechnol 27 (4), 230239 (2009).Google Scholar
5. Weiss, S. M., Rong, G. and Lawrie, J. L., Physica E 41 (6), 10711075 (2009).Google Scholar
6. Heideman, R. G., Kooyman, R. P. H. and Greve, J., Sensor Actuat B-Chem 10 (3), 209217 (1993).Google Scholar
7. Schmid, J. H., Sinclair, W., Garcia, J., Janz, S., Lapointe, J., Poitras, D., Li, Y., Mischki, T., Lopinski, G., Cheben, P., Delage, A., Densmore, A., Waldron, P. and Xu, D. X., Opt Express 17 (20), 1837118380 (2009).Google Scholar
8. Ryckman, J. D., Liscidini, M., Sipe, J. E. and Weiss, S. M., , Nano Letters, in press. [Available online, DOI: 10.1021/nl1028073, to appear in May 2011 issue].Google Scholar
9. Wei, X., Kang, C., Liscidini, M., Rong, G., Retterer, S. T., Patrini, M., Sipe, J. E. and Weiss, S. M., J Appl Phys 104 (12), 123113 (2008).Google Scholar
10. Ryckman, J. D., Liscidini, M., Sipe, J. E. and Weiss, S. M., Appl Phys Lett 96 (17), 171103 (2010).Google Scholar
11. Pirasteh, P., Charrier, J., Dumeige, Y., Haesaert, S. and Joubert, P., J Appl Phys 101 (8), 083110 (2007).Google Scholar
12. Lawrie, J. L., Jiao, Y. and Weiss, S. M., IEEE Trans. Nanotechnol. 9, 596602 (2010).Google Scholar
13. Ouyang, H., Striemer, C. C. and Fauchet, P. M., Appl. Phys. Lett. 88 (16), 163108 (2006).Google Scholar
14. Clare, B. H. and Abbott, N. L., Langmuir 21 (14), 64516461 (2005).Google Scholar