Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-13T07:36:46.738Z Has data issue: false hasContentIssue false

Growth of ion implanted buried FeSi2 on Si (111) and Si (100)

Published online by Cambridge University Press:  28 February 2011

K. Radermacher
Affiliation:
Institut für Schlcht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jüllich, Germany
S. Mantl
Affiliation:
Institut für Schlcht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jüllich, Germany
Ch. Dieker
Affiliation:
Institut für Schlcht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jüllich, Germany
H. Holzbrecher
Affiliation:
Zentralabteilung für Chemische Analysen, Forschungszentrum Jülich, 5170 Jüllich, Germany
W. Speier
Affiliation:
Zentralabteilung für Chemische Analysen, Forschungszentrum Jülich, 5170 Jüllich, Germany
H. Lüth
Affiliation:
Institut für Schlcht- und Ionentechnik, Forschungszentrum Jülich, 5170 Jüllich, Germany
Get access

Abstract

Buried FeSi2 layers have been fabricated by 200 keV Fe+ implantations into (111) and (100) Si substrates. By varying the dose from 0.4 to 7.1017 Fe+ cm−2 the dependence of the Fe concentration on ion dose was investigated systematically. The samples were characterized by Rutherford backscattering spectrometry, He+ ion channeling and secondary ion mass spectroscopy. In the as-implanted state the Fe peak concentration increases lineary with dose up to ≈2.4.1017 Fe+ cm−2. Above this dose a redistribution of Fe atoms was observed as indicated by comparison of measured depth profiles with Monte-Carlo simulations of high dose implantations. The Fe peak concentration shows an unusual dose dependence after rapid thermal annealing (RTA) at 1150°C for 10 s. A minimum dose of (2.4±0.1)1017 Fe+ cm−2 for (111) Si and a slightly higher dose of (2.7±0.1).1017 Fe+ cm−2 for (100) Si is necessary to form continuous metallic αFeSi2 layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Radermacher, K., Mantl, S., Dieker, Ch., and Lüth, H., Appl. Phys. Lett 59, 2145 (1991).CrossRefGoogle Scholar
[2] Oostra, D.J., Vandenhoudt, D.E.W., Bulle-Lieuwma, C.W.T., and Naburgh, E.P., Appl. Phys. Lett 59, 1737 (1991).CrossRefGoogle Scholar
[3] Panknin, D., Wieser, E., Grötzschel, R., Skorupa, W., Baither, D., Bartsch, H., Querner, G., and Danzig, A., Materials Science and Engeneering B, to be published.Google Scholar
[4] Mantl, S., Material Science Reports (1992), accepted for publication.Google Scholar
[5] Dusauaoy, Y., Portas, J., Wandji, R., and Roques, B., Acta Cryst. B27, 1209 (1971).CrossRefGoogle Scholar
[6] Massalski, T.B., in Binary Alloy Phase Diagrams, (American Society for Metals, Metals Park, OH, 1986), p. 1108.Google Scholar
[7] Bost, M.C. and Mahan, J.E., J. Appl. Phys. 64, 2034 (1988).CrossRefGoogle Scholar
[8] Dimitriadis, C.A., Werner, J.H., Logothetidis, S., Stutzmann, m., Werner, J., and Nesper, R., J. Appl. Phys. 68, 1726 (1990).CrossRefGoogle Scholar
[9] Rizzi, A., Moritz, H., and Lüth, H., J. Vac. Sci. Technol. A9, 912 (1991).CrossRefGoogle Scholar
[10] Doolittle, L. R., Nucl. Instr. Meth. B5, 344 (1985).CrossRefGoogle Scholar
[11] Ziegler, J.F., Biersack, J.P., and Littmark, U., in The Stopping and Range of Ions in Solids, edited by Ziegler, J.F. (Pergamon, New York, 1985).Google Scholar
[12] Radermacher, K., Mantl, S., Kohlhof, K., and Jäger, W., J. Appl. Phys. 68, 3001 (1990).CrossRefGoogle Scholar
[13] Børgesen, P., Behrisch, R., and Scherzer, B.M.U., Appl. Surf. Sci. 38, 183 (1982).Google Scholar
[14] Mantl, S., Jebasinski, R., and Hartmann, D., Nucl. Instr. Meth. B59/60. 666(1991).CrossRefGoogle Scholar