Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T08:20:33.987Z Has data issue: false hasContentIssue false

Growth of Patterned SiC by Ion Modification and Annealing of C60 Films on Silicon

Published online by Cambridge University Press:  03 September 2012

L. Moro
Affiliation:
SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025
A. Paul
Affiliation:
SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025
D. C. Lorents
Affiliation:
SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025
R. Malhotra
Affiliation:
SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025
K. J. Wu
Affiliation:
Charles Evans & Associates, 301 Chesapeake Drive, Redwood City, CA 94063
S. Subramoney
Affiliation:
DuPont Company, Route 141-Henry Clay, Wilmington, DE 19880-0228
Get access

Abstract

Irradiation of vapor-deposited C60 films with a KeV ion beam (Ar+ or Ga+) transforms the surface layer of C60 into a non-volatile carbon film. During the subsequent annealing at 900°C, the modified C60 layer confines the underlying C60 on the silicon surface, allowing the formation of SiC. With this method, patterned SiC structures on silicon with the high lateral resolution possible with ion beams are fabricated

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoy, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, p. 1363 (1994), and references cited.Google Scholar
2. Tong, L., Mehregany, M. and Matus, L. G., Appl. Phys. Lett. 60, p. 2992 (1992).Google Scholar
3. Zorman, C. A., Fleischman, A. J., Dewa, A. S., Mehregany, M., Jacob, C., Nishino, S. and Pirouz, P., J. Appl. Phys. 78, p. 5135 (1995).Google Scholar
4. Li, J. P. and Steckl, A. J., J. Electrochem. Soc. 142, p. 634 (1995).Google Scholar
5. Nishino, S., Powell, J.A. and Will, H. A., Appl. Phys. Lett. 42, p. 460 (1983).Google Scholar
6. Hamza, A. V., Balooch, M. and Moalem, M., Surf. Science 317, p. LI129 (1994).Google Scholar
7. Chen, D., Workman, R. and Sarid, D., Surf. Science 344, p. 23 (1995).Google Scholar
8. Henke, S., Stritzker, B. and Rauschenbach, B., J. Appl. Phys. 78, p. 2070 (1995).Google Scholar
9. Moro, L., Paul, A., Lorents, D. C., Malhotra, R., Ruoff, R. S., Jiang, L. Q., Stupian, G. W., Wu, K. J. and Subramoney, S., Appl. Surf. Science, in press.Google Scholar
10. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, Pergamon Press, New York, 1985.Google Scholar
11. Hoffman, A., Paterson, P. J. K., Johnston, S. T. and Prawer, S., Phys. Rev. B, 53, p. 1573 (1996).Google Scholar
12. Moro, L., Paul, A., Lorents, D. C., Malhotra, R., Ruoff, R. S., Jiang, L. Q., Lazzeri, P., Vanzetti, L., Lui, A. and Subramoney, S., submitted to J. Appl. Phys.Google Scholar
13. Philipp, M., Fuenffinger, M., Henke, S., Goeb, W., Lang, W., Kuzmany, H., Rauschenbach, B. and Stritzker, B., in Fullerenes and Fullerene Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M. and Roth, S. (World Scientific, 1996), p. 600.Google Scholar