Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-17T14:19:23.275Z Has data issue: false hasContentIssue false

Growth optimization for high quality GaN films grown by metal-organic chemical vapor deposition

Published online by Cambridge University Press:  01 February 2011

Jung Hun Jang
Affiliation:
huse29@ufl.edu, University of Florida, Materials Science and Engineering, Materials Science and Engineering, 100 Rhines Hall, P.O.Box 116400, Gainesville, FL, 32611-6400, United States
A M Herrero
Affiliation:
amh4@ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
Seungyoung Son
Affiliation:
sonsy@ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
B Gila
Affiliation:
bgila@mse.ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
C Abernathy
Affiliation:
caber@mse.ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
V Craciun
Affiliation:
vcrac@mse.ufl.edu, University of Florida, Materials Science and Engineering, Gainesville, FL, 32611, United States
Get access

Abstract

GaN layers were grown on c-plane sapphire substrates by using a conventional two step growth method via metal organic chemical vapor deposition (MOCVD). The effect of different growth conditions used in the deposition of the low temperature nucleation layer and high temperature islands on the crystalline quality of the GaN layers was investigated by high resolution X-ray diffraction (HRXRD) and transmission electron microscopy (TEM). The polar (tilt) and azimuthal (twist) spread were estimated from the full width at half maximum (FWHM) values of the omega rocking curves (¥ø-RCs) recorded from the planes parallel and perpendicular to the sample surface. It was found from the XRD and TEM study that the edge and mixed type threading dislocations are dominant defects so that the relevant figure of merit (FOM) for the crystalline quality should be considered only by the FWHM value of ¥ø-RC of the surface perpendicular plane. The result showed that the mixed- and edge-types dislocations were strongly associated with the growth conditions used in the deposition of the nucleation layer and high temperature islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akasaki, I. and Amano, H. Tech. Dig. Int. Electron Devices Meet 96, 231 (1996)Google Scholar
2. Lorenz, K. Gonsalves, M. Kim, W. Narayanan, W. and Mahajan, S. Appl. Phys. Lett. 77, 3391 (2000)Google Scholar
3. Figge, S. Bottcher, T. Einfeldt, S. and Hommel, D. J. Crys. Growth 221, 262 (2000)Google Scholar
4. Wood, D. A. Parbrook, P. J. Lynch, R. J. Lada, M. and Cullis, A. G. Phys. Stat. Sol. (a) 188, 641 (2001)Google Scholar
5. Hubbard, S. M. Zhao, G. Pavlidis, D. Sutton, W. and Cho, E. J. Crys. Growth 284, 297 (2005)Google Scholar
6. Chierchia, R. Bottcher, T. Heinke, H. Einfeldt, S. Figge, S. and Hommel, D. J. Appl. Phys. 93, 8918 (2003)Google Scholar
7. Ratnikov, V. V. Kjutt, R. and Shubina, T. J. Appl. Phys. 88, 6252 (1998)Google Scholar
8. Amano, H. Takeuchi, T. Sakai, H. Yamaguchi, S. Wetzel, C. and Akasaki, I. Mater. Sci. Forum 264-268, 1115 (1998)Google Scholar
9. Jang, J. H. Herrero, A. M. Gila, B. Abernathy, C. and Craciun, V. J. Appl. Phys. 103, 063514 (2008)Google Scholar
10. Metzger, T. Hopler, R. Born, E. Ambacher, O. Stutzmann, M. Stommer, R. Schuster, M. Gobel, H. Christiansen, S. Albrecht, M. and Strunk, H. P. Philosophical Magazine A 77, 1013 (1998)Google Scholar
11. Kapolnek, D. Wu, X. H. Heying, B. Keller, S. Keller, B. P. Mishra, U. K. DenBaars, S. P. and Speck, J. S. Appl. Phys. Lett. 67, 1541 (1995)Google Scholar
12. Heying, B. Wu, X. H. Keller, S. Li, Y. Kapolnek, D. Keller, B. P. DenBaars, S. P. and Speck, J. S. Appl. Phys. Lett. 68, 643 (1996)Google Scholar
13. Heinke, H. Kirchner, V. Einfeldt, S. Hommel, D. Appl. Phys. Lett. 77, 2145 (2000)Google Scholar
14. Srikant, V. Speck, J. S. and Clarke, D. R. J. Appl. Phys. 82, 4286 (1997)Google Scholar
15. Wu, X. H. Fini, P. Tarsa, E. J. Heying, B. Keller, S. Mishra, U. K. DenBaars, S. P. and Speck, J. S. J. Cryst. Growth 189/190, 231 (1998)Google Scholar
16. Narayanan, V. Lorenz, K. Kim, Wook, and Mahajan, S. Appl. Phys. Lett. 78, 1544 (2001)Google Scholar
17. Moran, B. Wu, F. Romanov, A. E. Mishra, U. K. Denbaars, S. P. and Speck, J. S. J. Cryst. Growth 273, 38 (2004)Google Scholar
18. Lu, L. Shen, B. Xu, F. J. Xu, J. Gao, B. Yang, Z. J. Zhang, G. Y. Zhang, X. P. Xu, J. and Yu, D. P. J. Appl. Phys. 102, 033510 (2007)Google Scholar
19. Narayan, J. Pant, Punam, Chugh, A. Choi, H. and Fan, J. C. C. J. Appl. Phys. 99, 054313 (2006)Google Scholar