Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-05T13:22:55.869Z Has data issue: false hasContentIssue false

Growth process and crystallographic properties of ammonia-induced vaterite

Published online by Cambridge University Press:  01 February 2011

Qiaona Hu
Affiliation:
qiaona@umich.edu
Jiaming Zhang
Affiliation:
zhangjia@umich.edu, U. of Michigan, Geological sciences, Ann Arbor, Michigan, United States
Udo Becker
Affiliation:
ubecker@umich.edu, U. of Michigan, Geological sciences, Ann Arbor, Michigan, United States
Get access

Abstract

Metastable vaterite crystals were produced by increasing the pH of Ca2+- and CO32--containing solutions through diffusing ammonia gas. The SEM and TEM studies indicate that this ammonia-induced vaterite is polycrystalline with a 6-fold symmetry of the crystal aggregate. The morphology and crystallographic properties of this assemblage change druing crystallization. One hour after nucleation starts, vaterite grains display a spherical structure composed of nano-particles (5-10 nm) with random crystallographic orientations. After that, horizontal layers begin to develop at the edge of the sphere and gradually tilt toward the center as they grow vertically, which results in a three-dimensional morphology with a dent in the center. The vaterite grains mature fully 16 hours after nucleation. TEM analysis indicates the grown vaterite grain (50-60 μm) consists of numerous hexagonal pieces of single crystals (1-2 μm) of similar crystallographic orientations. High-resolution TEM demonstrates that these single crystals grow along (001) with {110} hexagonal boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Braissant, O., Cailleau, G., Dupraz, C. and Verrecchia, E. P., Journal of Sedimentary Research 73 (3), 485490 (2003).10.1306/111302730485Google Scholar
2 Wolf, S. E., Loges, N., Mathiasch, B., Panthofer, M., Mey, I., Janshoff, A. and Tremel, W., Angewandte Chemie International Edition 46 (29), 56185623 (2007).Google Scholar
3 Hadiko, G., Han, Y. S., Fuji, M. and Takahashi, M., presented at the Asian International Conference on Advanced Materials, Beijing, Peoples R China, 2005 (unpublished).Google Scholar
4 Fuchigami, K., Taguchi, Y. and Tanaka, M., Advanced Powder Technology 20 (1), 7479 (2009).Google Scholar
5 Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K.-i. and Ueda, M., Biomaterials 24 (19), 32473253 (2003).Google Scholar
6 Kitamura, M., Journal of Colloid and Interface Science 236 (2), 318327 (2001).Google Scholar
7 Ogino, T., Suzuki, T. and Sawada, K., Geochimica Et Cosmochimica Acta 51 (10), 27572767 (1987).10.1016/0016-7037(87)90155-4Google Scholar
8 Kralj, D., Brecevic, L. and Kontrec, J., J. Cryst. Growth 177 (3–4), 248257 (1997).Google Scholar
9 Colfen, H. and Antonietti, M., Langmuir 14 (3), 582589 (1998).Google Scholar
10 Grasby, S. E., Geochimica Et Cosmochimica Acta 67 (9), 16591666 (2003).Google Scholar
11 Gehrke, N., Colfen, H., Pinna, N., Antonietti, M. and Nassif, N., Crystal Growth & Design 5 (4), 13171319 (2005).Google Scholar