Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-01T02:14:31.012Z Has data issue: false hasContentIssue false

Growth Rate Limiting and Carbon Reduction Processes for GaAs Grown by Alternate Gas Supply using H2 and N2 Carrier Gases

Published online by Cambridge University Press:  16 February 2011

M. Shinohara
Affiliation:
NTT LSI Laboratories 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan
Y. Yokoyama
Affiliation:
NTT LSI Laboratories 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan
N. Inoue
Affiliation:
NTT LSI Laboratories 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, Japan
Get access

Abstract

Processes limiting the growth of GaAs grown by an alternate gas supply are investigated by kinematical analysis. Based on these results, it is shown that the atomic layer epitaxial (ALE) window is expanded on the high temperature by the suppression of the decomposition of column III gas sources using a nitrogen carrier gas and on the low temperature side by the enhancement of their chemisorption to substrate surface atoms by a new method using a cracking tube. The latter enables us to achieve ALE of AlAs for the first time. Moreover, the carbon concentration is reduced by one order of magnitude by such a reaction control.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aoyagi, Y., Doi, A., Iwai, S. and Namba, S., J. Vac. Sci. Technol. B5, 1460 (1987).CrossRefGoogle Scholar
[2] Kawakyu, Y., Ishikawa, H., Sasaki, M. and Mashita, M., Jpn. J. Appl. Phys. 28, L1439 (1989).CrossRefGoogle Scholar
[3] Ozeki, M., Mochizuki, K., Otsuka, N. and Kodama, K., Appl. Phys. Lett. 53, 1509 (1988).Google Scholar
[4] Usui, A. and Sunakawa, H., Jpn. J. Appl. Phys. 25, L212 (1986).Google Scholar
[5] Yokoyama, H., Shinohara, M. and Inoue, N., submitted to Appl. Phys. Lett.Google Scholar
[6] Tamaru, K., J. Phys. Chem. 59, 777 (1955).Google Scholar
[7] Ishikawa, H., Kawakyu, Y., Sasaki, M. and Mashita, M., Jpn. J. Appl. Phys. 12, L2327 (1989).Google Scholar
[8] Nishizawa, J. and Kurabayashi, T., J. Electrochem. Sci. 130, 413 (1983).CrossRefGoogle Scholar
[9] Jacko, M.G. and Price, S.J.W., Can. J. Chem. 41, 1560 (1963).Google Scholar
[10] Luckerath, R., Tommack, P., Hertling, A., Koss, H.J., Balk, P., Jensen, K.F. and Richter, W., J. Crystal Growth 93, 151 (1988).Google Scholar
[11] Megro, T., Iwai, S., Aoyagi, Y., Ozaki, K., Yamamoto, Y., Suzuki, T., Okano, Y. and Hirata, A., J. Crystal Growth 99, 540 (1990).CrossRefGoogle Scholar
[12] Ozeki, M., Mochizuki, K., Ohtsuka, N. and Kodama, K., J. Vac. Sci. Technol. B5(4), 1184 (1987).Google Scholar
[13] Yokoyama, H., Shinohara, M. and Inoue, N., submitted to Appl. Phys. Lett.Google Scholar
[14] Masu, K., Tsubouchi, K., Shigeeda, N., Matano, T. and Mikoshiba, N., Appl. Phys. Lett. 56, 1543 (1990).Google Scholar
[15] Mori, H. and Takagishi, S., Jpn. J. Appl. Phys. 12 L877 (1984).Google Scholar
[16] Kuech, T.F. and Veuhoff, E., J. Crystal Growth. 68, 148 (1984).Google Scholar
[17] Wiley, J.D., in Semiconductor and Semimetals 10, eds. Willardson, R.K. and Beer, A.C. (Academic, New York, 1975), P.91.Google Scholar