Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-20T04:22:08.589Z Has data issue: false hasContentIssue false

Heating and Structural Disordering Effects of the Nonlinear Viscous Flow in a Zr55Al10Ni5Cu30 Bulk Metallic Glass

Published online by Cambridge University Press:  01 February 2011

Hidemi Kato
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2–1–1, Sendai 980–8577, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2–1–1, Sendai 980–8577, Japan
H. S. Chen
Affiliation:
(Ret.) Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974, U.S.A.
Get access

Abstract

Heat evolution of stress-induced structural disorder, ΔHs(ε), of a Zr55Al10Ni5Cu30 bulk metallic glass (BMG) during constant ram-velocity deformation at the glass transition region (Tg= 680 K) was deduced from in-situ measurements of temperature change of the deforming sample. At the transition from the linear to nonlinear viscoelasticity, the behavior of viscosity change with strain, η(ε), is qualitatively consistent with the enthalpy evolution of the structural disordering, ΔHs(ε), but not with the temperature change, ΔT(ε). It is concluded that the initial softening deformation is due to the stress-induced structural disordering. The change in the nonlinearity, -log ñ ≡ −logη/ηN, is found to be proportional to the ΔHs and the slope of ΔHs(–logñ) can be estimated to ∼ 400 J/mol, where ηN is the Newtonian viscosity. On the other hand, the temperature raise, ΔT(ε), is pronouncedly delayed as compared with the η(ε) and ΔHs (ε) at the transition, but is determined by the product of stress and plastic strain-rate, σ·εp, and is nearly proportional to it at the steady-state. The slope of ΔT(σ·εp) can be estimated to 5.2×10-2 K mol/W.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chen, H. S., Turnbull, D., J. Chem. Phys. 48, 2560 (1968).Google Scholar
2. Chen, H. S., Goldstein, M‥, J. Appl. Phys. 43, 1642 (1972).Google Scholar
3. Volkert, C. A., Spaepen, F., Mater. Sc.i Eng. 97, 449 (1988).Google Scholar
4. Bakke, E., Busch, R., Johnson, W. L., Appl. Phys. Lett. 67, 3260 (1995).Google Scholar
5. Zhang, T., Tsai, A. P., Inoue, A., Masumoto, T., Sci. Rep. RITU A36, 261 (1992).Google Scholar
6. Johnson, W. L., Mat. Res. Soc. Symp Proc. 554, 311 (1999).Google Scholar
7. Kawamura, Y., Kato, H., Inoue, A., Masumoto, T., Appl. Phys. Lett., 67, 2008 (1995).Google Scholar
8. Spaepen, F. Acta Metall., 25, 407 (1977).Google Scholar
9. Kawamura, Y., Shibata, T., Inoue, A., Masumoto, T., Appl. Phys. Lett. 69, 1208 (1996).Google Scholar
10. Kawamura, Y., Nakamura, T., Inoue, A., Mater. Sci. Forum 304–306, 349 (1999).Google Scholar
11. Nieh, T. G., Mukai, T., Liu, C. T., Wadsworth, J., Scripta Mater. 40, 1021 (1999).Google Scholar
12. de Hey, P., Sietsma, J., van den Beukel, A., Acta Mater 46, 5873 (1998).Google Scholar
13. Kato, H., Kawamura, Y., Inoue, A., Chen, H. S., Appl. Phys. Lett. 73, 3665 (1998).Google Scholar
14. Chen, H. S., Kato, H., Inoue, A., Jpn. J. Appl. Phys. 39, 1808 (2000).Google Scholar
Chen, H. S., Kato, H., Inoue, A., Mater. Trans. JIM 42, 597 (2001).Google Scholar
15. Kato, H., Kawamura, Y., Chen, H. S., Inoue, A., Jpn. J. Appl. Phys. 39, 5184 (2000).Google Scholar
16. Chen, H. S., Kato, H., Saida, J., Nishiyama, N., Inoue, A., Appl. Phys. Lett. 79, 60 (2001).Google Scholar
17. Kato, H., Inoue, A., Chen, H. S., Appl. Phys. Lett. 79, 4515. (2001).Google Scholar
18. Saida, J., Ishihara, S., Kato, H., Inoue, A., Chen, H. S., Appl. Phys. Lett. 80, 4708 (2002).Google Scholar
19. Chen, H. S., Kato, H., Inoue, A., Jpn. J. Appl. Phys. 42, 6504 (2003).Google Scholar
20. Chen, H. S., Kato, H., Inoue, A., Mat. Res. Soc. Symp. Proc. 754, 219 (2003).Google Scholar
21. Nieh, T. G., Wadsworth, J., Liu, C. T., Ohkubo, T., Hirotsu, Y., Acta Mater. 49, 2887 (2001).Google Scholar
22. Bae, D. H., Kim, H. K., Kim, S. H., Kim, D. H., Kim, W. T., Acta Mater. 50, 1749 (2002).Google Scholar
23. Chen, H., He, Y., Shiflet, G. J., Poon, S. J., Nature 367, 541 (1994).Google Scholar
24. Kim, J. J., Choi, Y., Suresh, S., Argon, A. S., Science 295, 654 (2002).Google Scholar