Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-09-30T03:29:03.810Z Has data issue: false hasContentIssue false

High Performance CuMetallized GaAs HEMTs Processing and Reliability

Published online by Cambridge University Press:  10 February 2011

T. Feng
Affiliation:
Department of Materials and Nuclear Engineering University of Maryland College Park, MD 20742, USA
A. Dimoulas
Affiliation:
Department of Materials and Nuclear Engineering University of Maryland College Park, MD 20742, USA
N. Strifas
Affiliation:
Department of Materials and Nuclear Engineering University of Maryland College Park, MD 20742, USA
A. Christou
Affiliation:
Department of Materials and Nuclear Engineering University of Maryland College Park, MD 20742, USA
Get access

Abstract

AlGaAs/GaAs based high electron mobility transistors (HEMTs) with Cu/Ti metallized gates have been fabricated. Copper gates were used to achieve low gate resistance and to minimize the hydrogen induced device degradation. The DC measurement of the processed AlGaAs/GaAs HEMTs with Cu/Ti gates shows comparable performance to similar Au based GaAs HEMTs. The Cu-based HEMTs were also subjected to elevated temperature testing under 5% H2 –N2 forming gas up to 250°C and 8 hours and no degradation due to hydrogen effects was found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, W. W., Parks, E. P., Yu, T. H., Chao, P. C., and Swanson, A. W., Proc. GaAs IC Symp., p247 (1994).Google Scholar
2. Chao, P. C., Kao, M. Y., Nordheden, K., Swanson, A. W., IEEE Electron Device Lett. V15, 151 (1994).Google Scholar
3. Camp, W. O Jr., Laster, R., Genova, V., Hume, R., Proc. GaAs IC Symp., p203 (1989).Google Scholar
4. Johnson, N. M., Mat. Res. Soc. Symp. Proc., V262, 369 (1992).Google Scholar
5. Smith, D. P., Hydrogen in Metals, Chicago, 1948.Google Scholar
6. Nakahara, S. and Okinaka, Y., Scripta Metall. V19, p517 (1985).Google Scholar
7. Wampler, W. R., Schober, T., and Lengeler, B., Phil. Mag., 34, 129 (1976).Google Scholar
8. Rhine, F. N. and Anderson, W.A., Trans. AIME, v143, 312(1941).Google Scholar
9. Nakahara, S. and Okinaka, Y., Mat. Sci. & Eng. A, v101, 227 (1988).Google Scholar
10. Goedkoop, J. A. and Anderson, A. F., Acta Cryst., v8, 118 (1955).Google Scholar
11. Guan, L., Christou, A., Halkias, G., and Barbe, D. F., IEEE Trans. Electron Devices, v42, 612 (1995).Google Scholar
12. Chevallier, J., Dautremont-Smith, W. C., Tu, C. W., and Pearson, S. J., Appl. Phys. Lett. V47, 108 (1985).Google Scholar
13. Estreicher, S. K., Mat. Sci. & Eng. R14, Nos 7-8, 318 (1995).Google Scholar
14. Pajot, B., Newman, R. C., Murray, R., Jalil, A., Chevallier, J., and Azoulay, R., Phys. Rev. B, v37, 4188 (1988).Google Scholar