Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T15:15:46.814Z Has data issue: false hasContentIssue false

High pressure annealing of HVPE GaN free-standing films: redistribution of defects and stress

Published online by Cambridge University Press:  01 February 2011

T. Paskova
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83, Linköping, Sweden
T. Suski
Affiliation:
High Pressure Research Center, Unipress, Polish Academy of Sciences, 01–142 Warsaw, Poland
M. Bockowski
Affiliation:
High Pressure Research Center, Unipress, Polish Academy of Sciences, 01–142 Warsaw, Poland
P.P. Paskov
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83, Linköping, Sweden
V. Darakchieva
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83, Linköping, Sweden
B. Monemar
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83, Linköping, Sweden
F. Tuomisto
Affiliation:
Helsinki University of Technology, P.O. Box 1100, 02015 HUT, Finland
K. Saarinen
Affiliation:
Helsinki University of Technology, P.O. Box 1100, 02015 HUT, Finland
N. Ashkenov
Affiliation:
Fakultät für Physik and Geowissenschaften, Universität Leipzig, 04103 Leipzig, Germany
M. Schubert
Affiliation:
Fakultät für Physik and Geowissenschaften, Universität Leipzig, 04103 Leipzig, Germany
C. Roder
Affiliation:
University of Bremen, Institute of Solid State Physics, 28359 Bremen, Germany
D. Hommel
Affiliation:
University of Bremen, Institute of Solid State Physics, 28359 Bremen, Germany
Get access

Abstract

The effect of high temperature, high pressure annealing on morphology, optical and structural properties of free-standing GaN films grown by hydride vapor phase epitaxy is studied. The annealing is found to change the intensities of the photoluminescence peaks as a result of a redistribution of the impurities and native defects in the thick GaN films. A positron annihilation study shows a decrease of the Ga vacancy-related defects below the detection limit after the annealing. The defect redistribution is correlated with a flattening of the stress distribution across the thickness, as revealed by micro Raman study, and with a decrease of the curvature of the annealed free-standing films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chernyak, L., Osinsky, A., Nootz, G., Schulte, A., Jasinski, J., Benamara, M., Liliental-Weber, Z., Look, D.C., and Molnar, R.J., Appl. Phys. Lett. 77, 2695 (2000).Google Scholar
2. Jasinski, J., Swider, S., Liliental-Weber, Z., Visconti, P., Jones, K.M., Reshchikov, M.A., Yun, F., Morkoc, H., Park, S.S., and Lee, K.Y., Appl. Phys. Lett. 78, 2297 (2001).Google Scholar
3. Nootz, G., Schulte, A., Chernyak, L., Osinsky, A., Jasinski, J., Benamara, M., and Liliental-Weber, Z., Appl. Phys. Lett. 80, 1355 (2002).Google Scholar
4. Look, D.C., Stutz, C.E., Molnar, R.J., Saarinen, K., and Liliental-Weber, Z., Solid State Commun. 117, 571 (2001).Google Scholar
5. Sun, X.L., Goss, S.H., Brillson, L.J., Look, D.C., and Molnar, R.J., J. Appl. Phys. 91, 6729 (2002).Google Scholar
6. Paskova, T., Paskov, P.P., Darakchieva, V., Goldys, E.M., Södervall, U., Valcheva, E., Arnaudov, B., and Monemar, B., Phys. Stat. Sol. (c) 0, 209 (2002).Google Scholar
7. Oila, J., Kivioja, J., Ranski, V., Saarinen, K., Look, D.C., Molnar, R.J., Park, S.S., Lee, S.K., and Han, J.Y., Appl. Phys. Lett. 82, 3433 (2003).Google Scholar
8. Detchprohm, T., Amano, H., Hiramatsu, K., and Akasaki, I., J. Crystal Growth 128, 384 (1993).Google Scholar
9. Bertram, F., Riemann, T., Christen, J., Kaschner, A., Hoffmann, A., Thomsen, C., Hiramatsu, K., Shibata, T., and Sawaki, N., Appl. Phys. Lett. 74, 359 (1999).Google Scholar
10. Kuball, M., Benyoucef, M., Beaumont, B., and Gibart, P., J. Appl. Phys. 90, 3656 (2001).Google Scholar
11. Darakchieva, V., Paskova, T., Paskov, P.P., Monemar, B., Ashkenov, N., and Schubert, M., J. Appl. Phys. 97, (2005).Google Scholar
12. Park, S.S., Park, I.W., and Choh, S.H.. Proc IWN 2000, IPAP conference Series C1, 60 (2001).Google Scholar
13. Roder, C., Böttcher, T., Hommel, D., Paskova, T., and Monemar, B. Mat. Res. Soc. Symp. Proc. 798 (2004) Y2.11 Google Scholar
14. Etzkorn, E.V. and Clarke, R.D., J. Appl. Phys. 89, 1025 (2001).Google Scholar
15. Paskova, T., Darakchieva, V., Valcheva, E., Paskov, P.P., Ivanov, I.G., Monemar, B., Böttcher, T., Roder, C., and Hommel, D., J. Electronic Materials 33, 389 (2004).Google Scholar
16. Vennéguès, P., Beaumont, B., Bousquet, V., and Gibart, P., J. Appl. Phys. 87, 4175 (2000).Google Scholar
17. Paskova, T., Valcheva, E., Paskov, P.P., Monemar, B., Rockowski, A.M., Davis, R.F., Beaumont, B., and Gibart, P., Diamond and Related Materials 13, 1125 (2004).Google Scholar
18. Saarinen, K., Hautojärvi, P., and Corbel, C., in Identification of Defects in Semiconductors, edited by Stavola, M. (Academic Press, New York, 1998), p. 209.Google Scholar
19. Monemar, B., J. Phys. Condensed Matter 13, 7011 (2001).Google Scholar
20. Moore, W.J., Freitas, J.A. Jr, Braga, G.C.B., Molnar, R.J., Lee, S.K., Lee, K.Y., and Song, I.J., Appl. Phys. Lett. 79, 2570 (2001).Google Scholar
21. Saarinen, K., Laine, T., Kuisma, S., Nissilä, J., Hautojärvi, P., Dobrzynski, L., Baranowski, J. M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszczynski, M., Grzegory, I., and Porowski, S., Phys. Rev. Lett. 79, 3030 (1997).Google Scholar
22. Kisielowski, C., Krueger, J., Ruvimov, S., Suski, T., Ager, J.W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E.R., Bremser, M.D., and Davis, R.F., Phys. Rev. B 54, 17745 (1996).Google Scholar
23. Fewster, P.F., X-ray scattering from semiconductors (Imperial College Press, London, 2000).Google Scholar