Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-20T17:42:23.092Z Has data issue: false hasContentIssue false

High Quality Oxide Film Formation by 02 Cluster Ion Assisted Deposition Technique

Published online by Cambridge University Press:  10 February 2011

J. Matsuo
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University Sakyo, Kyoto 606-01, Japan
W. Qin
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University Sakyo, Kyoto 606-01, Japan
M. Akizuki
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University Sakyo, Kyoto 606-01, Japan Microelectronics Research Center, SANYO Electric Co., Ltd. 180 Ohmori, Anpachi-cho, Anpachi-Gun, Gifu 503-01, Japan
T. Yodoshi
Affiliation:
Microelectronics Research Center, SANYO Electric Co., Ltd. 180 Ohmori, Anpachi-cho, Anpachi-Gun, Gifu 503-01, Japan
I. Yamada
Affiliation:
Ion Beam Engineering Experimental Laboratory, Kyoto University Sakyo, Kyoto 606-01, Japan
Get access

Abstract

A new oxide film formation technique using gas-cluster ion beams has been developed. 02 cluster ions were used to irradiate during the evaporation of metal atoms, and PbOx and In203 films were grown. At the acceleration voltages above 5 kV, polycrystalline PbOx films preferentially oriented to (111) were obtained. A significant smoothing effect was observed with an acceleration voltage as low as 1 kV. An average surface roughness of 0.9 nm was obtained at 7 kV. Oxygen cluster ion beams are also utilized to grow In203 films, which are widely used as conductive-transparent films in flat panel display. In203 was deposited on glass or silicon substrates with simultaneous irradiation with an oxygen cluster ion beam. Highly transparent (80%) and low resistivity (<4×10−4 Ωcm) films were obtained with 7keV oxygen cluster ion beams. Kinetic energy of above 3keV is necessary to obtain low resistivity films. These results clearly indicate that the kinetic energy of the cluster is effectively used to enhance oxidation on the surface without radiation damage, in spite of the high acceleration voltages.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yamada, I., Brown, W.L., Northby, J.A. and Sosnowski, M., Nucl. Instr. and Meth. B, 79, p.223(1993).Google Scholar
2. Matsuo, J., Toyoda, N. and Yamada, I., J.Vac. Sci. Technol. B, 14, p.3951(1996).Google Scholar
3. Akizuki, M., Matsuo, J., Ogasawara, S., Harada, M., Doi, A. and Yamada, I., Jpn. J. Appl. Phys. 35, p. 1450(1996).Google Scholar
4. Scott, J. F. and Araujo, C. A., Science, 246, p.1400(1989).Google Scholar
5. Karim, A. A., Deshpandey, C., Doerr, H. J. and Bunshah, R. F., Thin Solid Films, 172, p.111(1989).Google Scholar
6. Chopra, K. L. and Kaur, I., Thin Film Devices and Applications, Plenum, New York, 1983.Google Scholar
7. Matsuo, J., Abe, H, Takaoka, G.H. and Yamada, I., Nucl. Instr. and Meth. B, 99, p.244(1995).Google Scholar
8. Akizuki, M., Matsuo, J., Harada, M., Ogasawara, S., Doi, A., Yamada, I., Mater. Sci. Eng., A217–A218, p.78(1995).Google Scholar
9. Yamada, I., and Matsuo, J., Insepov, Z., Takeuchi, D., Akizuki, M. and Toyoda, N., J.Vac. Sci. Technol A, 14, p. 78 1(1996).Google Scholar
10. Yamada, I. and Matsuo, J., Mat. Res. Soc. Symp. Proc., 396, p.149(1996).Google Scholar
11. Akizuki, M., Matsuo, J., Harada, M., Ogasawara, S., Doi, A., Yoneda, K., Yamaguchi, T., Takaoka, G. H., Ascheron, C. E. and Yamada, I.: Nucl. Instr. and Meth. B, 99, p.229(1995).Google Scholar
12. Kitani, H., Toyoda, N., Matsuo, J. and Yamada, I., Nucl. Instr. and Meth. B, 121, p.489(1997).Google Scholar
13. Aoki, T., Matsuo, J., Insepov, Z. and Yamada, I., Nucl. Instr. and Meth. B, 121, p.49(1997).Google Scholar
14. Murakami, M., Angelillo, J., Huang, H. C. W., Segmuller, A. and Kircher, C. J., Thin Solid Films, 60, p.1(1979).Google Scholar
15. Vandenberg, J. M., Nakahara, S. and Hebard, A. F., J. Vac. Sci., Technol., 18, p.268(1981).Google Scholar
16. Matthews, J. W., Kircher, C. J. and Drake, R. E., Thin Solid Films, 42, p.69(1977).Google Scholar
17. Howson, R. P., Safi, I., Hall, G. W. and Danson, N., Nucl. Instr. and Meth. B, 121, p.96(1996).Google Scholar
18. Nath, P. and Bunshah, R. F., Thin Solid Films, 69, p.63(1980).Google Scholar
19. Rykara, L. A., Salum, V. S. and Serbinov, I. A., Thin Solid Films, 92, p.327(1982).Google Scholar
20. Suzuki, Y., Niino, F., Okada, S., Yoshida, M., 1994 SID International Symposium Digest of Technical Paper SID, xviii+996, p.943(1994).Google Scholar