Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T17:43:13.575Z Has data issue: false hasContentIssue false

High Resolution In Situ TEM Studies of Silicide-Mediated Crystallization of Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

C. Hayzelden
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
J. L. Batstone
Affiliation:
IBM T.J.Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10532
Get access

Abstract

We report in situ high resolution transmission electron microscopy studies of NiSi2-Medi-ated crystallization of Amorphous Si. Compared to conventional solid phase epitaxy of (111) Si, an enhancement of the growth rate by three orders of magnitude was observed and high quality twin-free needles of <111> Si were formed. Crystallization occurred via a ledge growth mechanism at the epitaxial Type A NiSi2/crystalline Si (111) interface. A Model for NiSi2-Mediated crystallization of Amorphous Si involving the passage of kinks along <110> ledges at the NiSi2/crystalline Si (111) interface is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cammarata, R. C., Thompson, C. V., Hayzelden, C. and Tu, K. N., J. Mater. Res. 5, 2133 (1990).Google Scholar
2. Hayzelden, C. and Batstone, J. L., in Proc. 49th Annual Meeting of the Electron Microscopy Society of America, edited by. Bailey, G. W. and Hall, E. L. (San Francisco Press, California, 1991) pp. 826827.Google Scholar
3. Hayzelden, C., Batstone, J. L. and Cammarata, R. C., Appl. Phys. Lett., 60, 225 (1992).Google Scholar
4. Hayzelden, C. and Batstone, J. L.. in Proc. 50th Annual Meeting of the Electron Microscopy Society of America, edited by Bailey, G. W., Bentley, J. and Small, J. A. (San Franscisco Press, California, 1992) pp. 13521353.Google Scholar
5. Hayzelden, C. and Batstone, J. L., J. Appl. Phys. 73, 8279 (1993).Google Scholar
6. Batstone, J. L. and Hayzelden, C., in Proc. 8th Oxford Conf. Microsc. Semicond. Mater. edited by Cullis, A. G. and Staton-Bevan, A., (Inst. Phys. Conf. Ser. 134: Section 4, London, 1993) pp. 165172.Google Scholar
7. Batstone, J. L. and Hayzelden, C., in Polycrystalline Semiconductors III - Physics and Technology. Solid State Phenomena, edited by Strunk, H. P., Werner, J. H., Fortin, B. and Bonnaud, O., (Trans. Tech, Zurich), to be published.Google Scholar
8. Mohadjeri, B., Linnros, J., Svensson, B. G. and Östling, M., Phys. Rev. Lett. 68, 1872 (1992).Google Scholar
9. Erokhin, Y. N., Grötzschel, R., Oktyabrsky, S. R., Roorda, S., Sinke, W. and Vyatkin, A. F., Mats. Sci. and Eng. B 12, 103, (1992).Google Scholar
10. Hempel, T., Schoenfeld, O. and Veit, P. in Beam-Solid Interactions: Fundamentals and Applications, edited by Nastasi, M., Harriott, L. R., Herbots, N. and Averback, R. S. (Mater. Res. Soc. Proc. 279, Pittsburgh, PA, 1993) pp. 267272.Google Scholar
11. Kuznetsov, A. Yu., Khodos, I.I., Mordkovich, V. N. and Vyatkin, A. F., Nucl. Instr. Meth. B80/81, 990 (1993).Google Scholar
12. Kuznetsov, A.Yu., Khodos, I.I., Mordkovich, V. N. and Vyatkin, A. F., Appl. Surf. Sci. (to be published).Google Scholar
13. Csepregi, L., Kennedy, E. F., Gallagher, T. J. and Mayer, J. W., J. Appl. Phys. 48, 4234 (1977).Google Scholar
14. Spaepen, F. and Turnbull, D., in Laser-Solid Interactions and Laser Processing, edited by Ferris, S. D., Leamy, H. J. and Poate, J. M., (Am. Inst. Phys. Proc. 50, New York, NY, 1979). pp. 7383.Google Scholar
15. Williams, J. S. and Elliman, R. G., Phys. Rev. Lett. 51, 1069 (1983).Google Scholar