Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-07T12:01:15.924Z Has data issue: false hasContentIssue false

High Silicon Self-Interstitial Diffusivity as Revealed by Lithium Ion Drifting

Published online by Cambridge University Press:  15 February 2011

W. B. Knowlton
Affiliation:
Lawrence Berkeley National Laboratory andUniversity of California, Berkeley, CA 94720, USA, knowlton@mhl.lbl.gov Department of Materials Science & Mineral Engineering, University of California, Berkeley, CA 94720, USA, knowlton@mhl.lbl.gov
J. T. Walton
Affiliation:
Lawrence Berkeley National Laboratory andUniversity of California, Berkeley, CA 94720, USA, knowlton@mhl.lbl.gov
Y. K. Wong
Affiliation:
Lawrence Berkeley National Laboratory andUniversity of California, Berkeley, CA 94720, USA, knowlton@mhl.lbl.gov
I. A. Mason
Affiliation:
Lawrence Berkeley National Laboratory andUniversity of California, Berkeley, CA 94720, USA, knowlton@mhl.lbl.gov
E. E. Haller
Affiliation:
Lawrence Berkeley National Laboratory andUniversity of California, Berkeley, CA 94720, USA, knowlton@mhl.lbl.gov Department of Materials Science & Mineral Engineering, University of California, Berkeley, CA 94720, USA, knowlton@mhl.lbl.gov
Get access

Abstract

We report on the use of lithium ion (Li+) drifting1 as a sensitive means to study Si self-interstitial (SiI) diffusion.2 Li+ properties in silicon are well known from extensive ion drift studies and Li+ interactions with dopants and point defects.3 We have used this low temperature (∼100°C) technique in combination with Si1 injection from oxides to delineate, identify and eliminate D defects4 in certain p-type floating zone (FZ) Si single crystals.5 Our results suggest Si1 diffusion occurs to a depth of at least 10 mm into the bulk during phosphorus (P) diffusion with oxidation (i.e., POCI3 process) at 950°C for 100 min. Process modeling of this lower bound SiI diffusion using SUPREM-IV9 results in a Sii diffusivity of 3.5×10−6 cm2/s at 950°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pell, E.M., J. Appl. Phys. 31, 291 (1960).Google Scholar
2. Knowlton, W.B., Walton, J.T., Lee, J.S., Wong, Y.K., Haller, E.E., Ammon, W.v. and Zulehner, W., in Proc. 18th Intl. Conf. on Defects in Semicon./1995, edited by Suezawa, M. and Katayama-Yoshida, H., (Trans Tech Publications Ltd, 201, Switzerland 1995), p. 1761.Google Scholar
3. Reiss, H., Fuller, C.S. and Morin, F.J., BSTJ XXXV, 535 (1956).Google Scholar
4. Roksnoer, P.J. and van den Boom, M.M.B., J. Cryst. Growth 53, 563 (1981).Google Scholar
5. Walton, J.T., Wong, Y.K., Derhocobian, N. and Haller, E.E., Appl. Phys. Lett. 63, 343 (1993).Google Scholar
6. Walton, J.T., Wong, Y.K., Derhocobian, N. and Haller, E.E., IEEE Trans. NS 41, 1031 (1994).Google Scholar
7. Knowlton, W.B., Walton, J.T., Lee, J.S., Lewak, D., Wong, Y.K. and Haller, E.E., in Process Physics and Modeling in Semiconductor Technology, edited by Srinivasan, G. R., Murthy, C. S. and Dunham, S. T., (Electrochemical Society, Inc., 96–4, Pennington, NJ 1996), p. 324.Google Scholar
8. Walton, J.T., Lee, J.S., Lewak, D., Wong, Y.K., Cummings, A.C., Mewaldt, R.A., Wiedenbeck, M.E., Knowlton, W.B. and Haller, E.E., in High Purity Silicon IV, edited by Claeys, C. L., Rai-Choudhury, P., Stallhofer, P. and Maurtis, J. E., (Electrochemical Society, Inc., 96–13, Pennington, NJ 1996), p. 407.Google Scholar
9. SUPREM-IV, Stanford University, Office of Technology Licensing Stanford CA.Google Scholar
10. Zulehner, W., in Semiconductor Silicon, edited by Harbeke, G. and Schulz, M. J., (Springer-Verlag, 13, Berlin 1989), p. 127.Google Scholar
11. Fuller, C.S. and Ditzenberger, J.A., Phys. Rev. 91, 193 (1953).Google Scholar
12. Severiens, J.C. and Fuller, C.S., Phys. Rev. 92, 1322 (1953).Google Scholar
13. Fuller, C.S., Phys. Rev. 86, 136 (1952).Google Scholar
14. Pell, E.M., J. Appl. Phys. 32, 1048 (1961).Google Scholar
15. Walton, J.T., Sommer, H.A., Greiner, D.E. and Bieser, F.S., IEEE Trans. NS NS–25, 391 (1978).Google Scholar
16. Sher, A.H. and Coleman, J.A., IEEE Trans. NS NS–17, 125 (1970).Google Scholar
17. Ourmazd, A. and Schröter, W., Appl. Phys. Lett. 45, 781 (1984).Google Scholar
18. Whoriskey, P.J., J. Appl. Phys. 29, 867 (1958).Google Scholar
19. Tan, T.Y. and Gösele, U., Appl. Phys. A 37, 1 (1985).Google Scholar
20. Bronner, G.B. and Plummer, J.D., J. Appl. Phys. 61, 5286 (1987).Google Scholar
21. Morehead, F.F., in Defect Electronic Materials, edited by Stavola, M., Pearton, S. J. and Davies, G., (MRS Proc. 104, Pittsburgh, PA 1987), p. 99.Google Scholar
22. Boit, C., Lau, F. and Sittig, R., Appl. Phys. A 50, 197 (1990).Google Scholar
23. Zimmermann, H. and Ryssel, H., Appl. Phys. A 55, 121 (1992).Google Scholar
24. Bracht, H., Stolwijk, N.A. and Mehrer, H., Phys. Rev. B 52, 16542 (1995).Google Scholar