Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-09T13:38:21.106Z Has data issue: false hasContentIssue false

High Temperature Reproducible Preparation of Mg2Si Films on (001)Al2O3 substrates Using RF Magnetron Sputtering Method

Published online by Cambridge University Press:  16 May 2014

Atsuo Katagiri
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
Shota Ogawa
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
Takao Shimizu
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
Masaaki Matsushima
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
Kensuke Akiyama
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan Kanagawa Industrial Technology Center, 705-1 Shimoimaizumi, Ebina-shi, Kanagawa 243-0435, Japan
Hiroshi Funakubo
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, J2-43, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
Get access

Abstract

A RF magnetron sputtering method was used to prepare Mg2Si films at 300-400oC on (001) Al2O3 substrates from a Mg disc target with Si chips. Mg deposition was not detected at 400°C from a pure Mg disc target without Si chips due to the high vapor pressure of Mg. However, the amount of Mg deposition increased with the increase in Si/(Mg+Si) area ratio of the target surface together with the increase of the Si deposition. The obtained films had a stoichiometric composition of Si/(Mg+Si)=0.33 that consisted of the well crystalline Mg2Si single phase regardless of Si/(Mg+Si) area ratio of the target surface. This showed the existence of a “process window” against supply ratio of Si/(Mg+Si) for Mg2Si single phase films with a stoichiometric composition. This is considered to be due to the vaporization of the excess Mg prepared under the Mg excess condition as reported by Mahan et al. for Mg2Si films prepared at 200°C by ultra-high vacuum evaporation.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morris, R. G., Redin, R. D. and Danielson, G. C., Phys. Rev. 109, 19091915 (1958).10.1103/PhysRev.109.1909CrossRefGoogle Scholar
Heller, M. W. and Danielson, G. C., J. Phys. Chem. Solids 23, 601610 (1962).CrossRefGoogle Scholar
Mahan, J. E., Vantomme, A. and Langouche, G., Phys. Rev. B 54, 16965–1971 (1996).CrossRefGoogle Scholar
Tamura, D., Nagai, R., Sugimoto, K., Udono, H., Kikuma, I., Tajima, H. and Ohsugi, I. J., Thin Solid Films 515, 82728276 (2007).10.1016/j.tsf.2007.02.065CrossRefGoogle Scholar
Scouler, W. J., Phys. Rev. 178, 13531357 (1969).CrossRefGoogle Scholar
Zaitsev, V. K., Fedorov, M. I., Gurieva, E. A., Eremin, I. S., Konstantinov, P. P., Samunin, Yu. and Vedernikov, M. V., Phys. Rev. B74, 045207–1-5 (2006).CrossRefGoogle Scholar
Szczech, J.R., Higgins, J.M. and Jin, S., J. Mater. Chem., 21, 40374055 (2011) .CrossRefGoogle Scholar
Xiao, Q., Xie, Q., Zhao, K. and Yu, Z., Adv. Mater. Res. 129-131, 290294 (2012).Google Scholar
Galkin, K. and Galkin, N., Phys. Proceedia 11, 5558 (2011).CrossRefGoogle Scholar
Wang, Y., Wang, X. N., Mei, Z. X., Du, X. L., Zou, J., Jia, J. F., Xue, Q. K., Zhang, X. N. and Zhang, Z., J. Appl. Phys. 102, 126102–1-3 (2007).CrossRefGoogle Scholar
Baleva, M., Zlateva, G., Atanassov, A., Abrashev, M. and Goranova, E., Phys. Rev. B, 72, 115330–1-7 (2005).CrossRefGoogle Scholar
Serikawa, T., Henmi, M. and Kondoh, K., J. Vac. Sci. Tech. A22, 1971–1274 (2004).CrossRefGoogle Scholar
Xiao, Q. Xie, Q., Shen, X.. Zhang, J., Yu, Z. and Zhao, K., Appl. Surf. Sci. 257, 78007804 (2011).CrossRefGoogle Scholar
Braus, M., Braun, B., Ochs, D., Maus-Friedrichs, W. and Kempter, V., Surf. Sci. 398, 184194 (1998).CrossRefGoogle Scholar
Tani, J., Takahashi, M. and Kido, H., Mater. Sci. Eng. 18, 142013–1-4 (2011).Google Scholar
Yoshinaga, M., Iida, T., Noda, M., Endo, T. and Takanashi, Y., Thin Solid Films 461, 8689 (2004).10.1016/j.tsf.2004.02.072CrossRefGoogle Scholar
Nayeb-Hashemi, A. A. and Clark, J. B., Bull. Alloy Phase Diagram. 5, 584592 (1984).CrossRefGoogle Scholar
Vantomme, A., Mahan, J., Langouche, G., Becker, J., Bael, M., Temst, K. and Haesendonck, C., Appl. Phsy. Lett., 70, 10861088 (1997).CrossRefGoogle Scholar