Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-08T09:29:21.907Z Has data issue: false hasContentIssue false

Highly Reliable WGe Ohmic Contact to GaAs-AlGaAs HBTs

Published online by Cambridge University Press:  22 February 2011

T. R. Fullowan
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
B. Tseng
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
L. R. Harriott
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
E. Lane
Affiliation:
AT&T Bell Laboratories. Breiningville, PA.
Get access

Abstract

We report a highly reliable, sputtered WGe emitter contact for npn heterojunction bipolartransistors. A specific contact resistance of 7.5 × 10−7 Ω-cm2 and a transfer resistance of 4.0 × 10−2 Ωmm were obtained after 380°C, 1 min alloy. The contact was patterned by SF6 dry etching at low bias using a Au mask. This novel contact has comparable resistance to conventional AuGe-based metallization while having superior thermal stability. We have studied the dependence of contact properties on the post-deposition annealing conditions by transfer length method of electrical characterization and Auger analysis, and will also report long-term reliability results in comparison to AuGe-based metallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Williams, R., Modern GaAs Proc. Meth. p. 221 (Artech House Inc. 1990).Google Scholar
2. Aina, O., Katz, W., Baliga, B. J., and Rose, K., J. Appl. Phys. 52, 1127 (1981).Google Scholar
3. Shaw, D., Atomic Diffusion in Semicond. (Plenum, New York, 1973).Google Scholar
4. Sokolov, V. I. and Shishiyanu, F. S., Sov. Phys. Solid State 6, 265 (1964).Google Scholar
5. Iliadis, A. and Singer, K. E., Solid State Electron. 26, 7 (1983).Google Scholar
6. Dell, J., Hartragel, H. L., and Nassibian, A. S., J. Phys. D16, L243 (1983).Google Scholar
7. Lee, H. S., Larcau, R. T., Schauer, S. N., Moerkirk, R. P., Jones, K. A., Elagoz, S., Vavra, W., and Clarke, R., MRS Symp. Proc. vol. 240 (1992).Google Scholar
8. Canali, C., Castaldo, F., Fantini, F., Ogliari, D., Vanzi, M., Zicolillo, M., and Zanoni, E., Microelectron. Reliab., vol. 24, no. 5, p. 947 (1984).Google Scholar
9. Goronki, H., Maracas, G. N., and Fejes, P., Inst. Phys. Conf. Ser. No. 96, Chpt. 6.Google Scholar
10. For explanation of TLM see Berger, H. H., J. Electrochem. Soc. 119, 507 (1972);Google Scholar
Shih, Y. C., Murakami, M., Wilkie, E. L. and Callegai, A. C., J. Appl. Phys. 62, 582 (1987).Google Scholar
11. Abemathy, C. R., Ren, F., Peaiton, S. J., FuUowan, T. R., Montgomery, K., Wisk, P., Lothian, J., Smith, P., Nottenburg, R. N., J. Cryst. Growth, vol. 120, 1992 234.Google Scholar
12. Ren, F., Fullowan, T. R., Chu, S. N. G., Pearton, S. J., Hobson, W. S., and Emerson, A. B., J. Electron. Mat. vol. 20, No. 4 1991, p. 305.Google Scholar
13. Ren, F., Emerson, A. B., Pearton, S. J., FuUowan, T. R., and Brown, J. M., Appl. Phys. Lett. vol. 58, March 11, 1991, No. 10, p. 1030–32.Google Scholar
14. Ren, F., Chu, S. N. G., Abemathy, C. R., FuUowan, T. R., Lothian, J.R., and Pearton, S. J., Semicond. Sci. Technol. 7 (1992) p. 793–98.Google Scholar