Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-29T23:12:48.157Z Has data issue: false hasContentIssue false

High-Quality Polycrystalline Silicon Thin Film Prepared by a Solid Phase Crystallization Method

Published online by Cambridge University Press:  28 February 2011

T. Baba
Affiliation:
New Materials Research Center, Sanyo Electric Co., Ltd. 1-18-13, Hashiridani, Hirakata, Osaka 573, Japan
T. Matsuyama
Affiliation:
New Materials Research Center, Sanyo Electric Co., Ltd. 1-18-13, Hashiridani, Hirakata, Osaka 573, Japan
T. Sawada
Affiliation:
New Materials Research Center, Sanyo Electric Co., Ltd. 1-18-13, Hashiridani, Hirakata, Osaka 573, Japan
T. Takahama
Affiliation:
New Materials Research Center, Sanyo Electric Co., Ltd. 1-18-13, Hashiridani, Hirakata, Osaka 573, Japan
K. Wakisaka
Affiliation:
New Materials Research Center, Sanyo Electric Co., Ltd. 1-18-13, Hashiridani, Hirakata, Osaka 573, Japan
S. Tsuda
Affiliation:
New Materials Research Center, Sanyo Electric Co., Ltd. 1-18-13, Hashiridani, Hirakata, Osaka 573, Japan
Get access

Abstract

We succeeded, for the first time, in depositing a silicon film which features 1000Å-wide single-crystalline grains embedded in a matrix of amorphous tissue. The deposition was done by plasma-enhanced CVD from silane diluted with hydrogen at a considerably high temperature (550°C). 5pm-thick undoped amorphous silicon film was deposited on the above film and was crystallized by a solid phase crystallization method. The polycrystalline silicon film which was obtained has a columnar structure and shows an extremely high electron mobility of 808 cm2/Vs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Baliga, B. J., J. Cryst. Growth, 41, 199 (1977).Google Scholar
2 Haberecht, R. R. and Kern, E.L., in Semiconductor Silicon (Electrochemical Society, 1969).Google Scholar
3 Matsuyama, T., Taguchi, M., Tanaka, M., Matsuoka, T., Tsuda, S., Nakano, S. and Kuwano, Y., Jpn. J. Appl. Phys., 29, 2327 (1990).Google Scholar
4 Gat, A., Gerzlieyg, L., Gibbons, J. F., Magee, T. J., Peng, J. and Hong, J. D., Appl. Phys. Lett., 33, 775 (1978).Google Scholar
5 Becker, F. S., Oppolzer, H., Weitzel, I., Eichermueller, H. and Schaber, H., J. Appl. Phys., 56, 1233 (1984).Google Scholar
6 Matsuyama, T., Tanaka, M., Tsuda, S., Nakano, S. and Kuwano, Y., Jpn. J. Appl. Phys., 32, 3720 (1993).Google Scholar
7 Matsuda, A., J. Non-Cryst. Solids., 59&60, 767 (1983).Google Scholar
8 Parsons, G., Boland, J. and Tsang, J., Jpn. J. Appl. Phys., 31, 1943 (1992).Google Scholar