Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-11T13:18:55.075Z Has data issue: false hasContentIssue false

High-Resolution Leed Study of Intermixing of Fe Films on Au(001) Surface

Published online by Cambridge University Press:  21 February 2011

Y.-L. He
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, USA
G.-C. Wang
Affiliation:
Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180–3590, USA
Get access

Abstract

Ultrathin ferromagnetic Fe films have been grown on an Au(OOl) surface. Using the angular profile measurements of High-Resolution LEED (HRLEED), we show the inho-mogeneities at the interface due to atomic place exchange between Fe and Au atoms can drastically change the angular intensity distributions of diffraction beams. The contributions from the inhomogeneities on the surface can be properly decoupled from the total angular intensity distributions. Through the energy dependent angular profile analysis of diffraction beams, we have quantitatively determined the degree of inhomogeneous atomic intermixing at elevated annealing temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wollschläger, J., Falta, J., and Henzler, M., Appl. Phys. A 50, 57 (1990); and ref. therein.Google Scholar
[2] Scheithauer, U., Meyer, G., and Henzler, M., Surf. Sci. 178, 441 (1986).Google Scholar
[3] Liew, Y.-F. and Wang, G.-C., Surf. Sci. 227, 190 (1990).Google Scholar
[4] See, e.g., Smith, J.R. and Banerjea, A., Phys. Rev. Lett. 59, 2451 (1987);Google Scholar
Mezey, L.Z. and Giber, J., Jan. J. Appl. Phys. 21, 1569 (1982).Google Scholar
[5] Hahn, P., Clabes, J., and Henzler, M., J. Appl. Phys. 51, 2079 (1980).Google Scholar
[6] Henzler, M., Busch, H., and Friese, G., in Kinetics of Ordering and Growth at Surfaces, Lagally, M.G. ed., Plenum Press, New York (1990) p. 101.Google Scholar
[7] Pimbley, J.M. and Lu, T.-M., J. Appl. Phys. 57, 1121 (1985).Google Scholar
[8] Lent, O.S. and Cohen, P.I., Surf. Sci. 139, 121 (1984).Google Scholar
[9] Sano, K.I. and Miyagawa, T., Jap. J. Appl. Phys. 30, 1434 (1991).Google Scholar
[10] Raeker, T.J., Sanders, D.E., and DePristo, A.E., J. Vac. Sci. Technol. A 8, 3531 (1990);Google Scholar
Himpsel, F.J., Phys. Rev. B 44, 5966 (1991).Google Scholar
[11] Schmitz, P.J., Leung, W.-Y., Graham, G.W., and Thiel, P.A., Phys. Rev. B 40, 11477 (1989).Google Scholar
[12] Egelhoff, W.F. Jr,, MRS proc. (1991), in press.Google Scholar
[13] Bader, S.D. and Moog, E.R., J. Appl. Phys. 61, 3729 (1987).Google Scholar
[14] Feibelman, P.J., Phys. Rev. Lett. 65, 729 (1990).Google Scholar
[15] Kellogg, G.L. and Voter, A.F., Phys. Rev. Lett. 67, 622 (1991); and ref. therein.Google Scholar