Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T09:35:38.823Z Has data issue: false hasContentIssue false

Hybrid semiconductor-ferromagnetic-metal active optical isolator.

Published online by Cambridge University Press:  01 February 2011

Vadym Zayets
Affiliation:
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1–1–4, Tsukuba, Ibaraki 305–8568, Japan.
Koji Ando
Affiliation:
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1–1–4, Tsukuba, Ibaraki 305–8568, Japan.
Get access

Abstract

The effect of non-reciprocal loss/gain in semiconductor-ferromagnetic-metal hybrid was studied. It is shown that the optical loss/gain of this semiconductor-ferromagnetic-metal hybrid differs for the forward and backward propagation when the magnetization is perpendicular to the light propagation and lies in the film plane. Using this effect a new design of optical isolator is proposed, which is beneficial for monolithic integration of optical isolator with laser diode. The non-reciprocal loss was experimentally observed in Ga1-xAlxAs waveguide covered by Co for the first time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ando, K., Okoshi, T., and Koshizuka, N., Appl. Phys. Lett. 53, 4 (1988).Google Scholar
2. Ando, K., SPIE Proceedings 1126, 58 (1989).Google Scholar
3. Sugimoto, N., Terui, H., Tate, A., Katoh, Y., Yamada, Y., Sugita, A., Shibukawa, A., and Inoe, Y., IEEE J. Lightwave Technol. 14, 2537 (1996).Google Scholar
4. Gerhardt, R., Sure, S., Doetsch, H., Linkewitz, T., and Tolksdorf, W., Opt. Comm. 102, 31 (1991).Google Scholar
5. Shintaku, T., Appl. Phys. Lett. 73, 1946 (1998).Google Scholar
6. Yokoi, H. and Mizumoto, T., Electron. Lett. 33, 1787 (1997).Google Scholar
7. Levy, M., Osgood, R.M., Kumar, A., and Bakhru, H., Appl. Phys. Lett. 71, 2617 (1997).Google Scholar
8. Zayets, V., Debnath, M. C., and Ando, K., Appl. Phys. Lett. 84, 565 (2004).Google Scholar
9. Zayets, W. and Ando, K., Appl. Phys. Lett. 77, 1593 (2000).Google Scholar
10. Hammer, J.M., Abeles, J.H., and Channin, D.J., IEEE Photon. Technol. Lett. 9, 631, (1997).Google Scholar
11. Zaets, W. and Ando, K., IEEE Photon. Technol. Lett. 11, 1012 (1999).Google Scholar
12. Takenaka, M. and Nakano, Y.: Proc. 11th Int. Conf. Indium Phosphide and Related Materials, Proceedings p. 289 (1999).Google Scholar
13. Shimizu, H. and Tanaka, M.: Appl. Phys. Lett. 81, 5246 (2002).Google Scholar
14. Vanwolleghem, M., Van Parys, W., Van Thourhout, D., Baets, R., Lelarge, F., Gauthier-Lafaye, O., Thedrez, B., Wirix-Speetjens, R. and Lagae, L.: Optical Fiber Communication Conf., TuE6 (2004).Google Scholar
15. Shimizu, H. and Nakano, Y., Jpn. J. Appl. Phys. 43, L1561 (2004).Google Scholar
16. Zaets, W. and Ando, K., IEEE Photon. Technol. Lett. 13, 185 (2001).Google Scholar
17. Gerhardt, R., Sure, S., Doetsch, H., Linkewitz, T., and Tolksdorf, W., Opt. Comm. 102, 31 (1991).Google Scholar
18. Okamura, Y., Negami, T., and Yamamoto, S., Appl. Opt., 23, pp. 1886 (1984).Google Scholar
19. Mizumoto, T., Oochi, K., Harada, T., and Naito, Y., IEEE J. Lightwave Technol. LT–4, 347 (1986).Google Scholar
20. Eqs. (2) and (3) describe transverse Kerr effect.Google Scholar
See, for example, Hunt, R.P.Contrast enhancement of the transverse Kerr effect”, J. Appl. Phys. Vol. 38, pp. 12151216, Mar. 1967.Google Scholar
21. O'Reilly, E.P. and Adams, A.R., IEEE J. Quantum Electron., QE–30, 366 (1994).Google Scholar
22. Aspnes, D.E., Kelso, S.M., Logan, R.A., and Bhat, R., J. Appl. Phys 60, 754 (1986).Google Scholar
23. Afromowits, M.A., Solid State Comm. 15, 59 (1974).Google Scholar
24. Johnson, P.B. and Christy, R.W., Phys. Rev. B 9, 5056 (1974).Google Scholar
25. Visnovsky, S., Nyvlt, M., Parizek, V., Kielar, P., Prosser, V., Krishnan, R., and Tessier, M., “IEEE Trans. Magn. 29, 3390 (1993).Google Scholar