Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T15:20:37.386Z Has data issue: false hasContentIssue false

Hydrogen Passivation of Interfacial Defects in MOCVD grown GaAs/InP

Published online by Cambridge University Press:  25 February 2011

V. Swaminatan
Affiliation:
AT&T Bell Laboratories, Solid State Technology Center, Breinigsville, PA 18103
U. K. Chakrabarthi
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
R. Caruso
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. Lopata
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The results of a low temperature (5K) photoluminescence study of hydrogenation of GaAs on InP grown by metal organic chemical vapor deposition are presented. An emission band at ~ 1.4 eV originating from the GaAs/InP interracial region shows a 30 fold increase in intensity relative to the GaAs band edge emission after exposure to hydrogen plasma for 30 min at 250°C. This improvement in intensity is attributed to hydrogen passivation of defects at the heterointerface caused by the large (≈4%) lattice mismatch between GaAs and InP. The passivation effect recovers on annealing the hydrogenated sample at 350°C. Excitation dependence of the ~1.4 eV band suggests that the interfacial region consists of a compositionally graded layer. Further, this band shifts to higher energy on annealing the sample in the temperature range 150-450°C with the hydrogenated sample exhibiting a larger shift than the untreated sample. It is suggested that the annealing induced peak shift arises due to intermixing of the compositionally graded interface and that the degree of intermixing is greater in the hydrogenated sample compared to the untreated sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Lo, Y. H., Bhat, R. and Lee, T. P., Electron. Lett. 24, 865 (1988).Google Scholar
2 Lo, Y. H., Haibison, J., Abeles, J. H., Lee, T. P. and Nahory, R. E., IEEE Electron Device Lett., 9, 383 (1988).Google Scholar
3 Asano, K., Kasahara, K. and Itoh, T., IEEE Electron Device Lett., 8, 289 (1987).Google Scholar
4 Huang, D., Agrawala, S. and Morkoc, H., Appl. Phys. Lett., 54, 51 (1989).Google Scholar
5 Chang-Hasnain, C. J., Lo, Y. H., Bhat, R., Stoffel, N. G. and Lee, T. P., Appl. Phys. Lett., 54, 156 (1989).Google Scholar
6 Suzuki, A., Itoh, T., Terakado, T., Kasahara, K., Asano, K., Inomoto, Y., Ishihara, H., Torikai, T. and Fujita, S., Electron. Lett., 27, 954 (1987).Google Scholar
7 Suzuki, A., Itoh, T., Terakado, T., Kasahara, K., Asano, K., Ishihara, H., Fujita, S. and Torikai, T., European Conference on Optical Communication Proceedings, 1987.Google Scholar
8 Suzaki, T., Fujita, S., Inomoto, Y., Terakado, T., Kasahara, K., Asano, K., Torikai, T., Itoh, T., Shikada, M. and Suzuki, A., Electron Lett., 24, 1283 (1988).Google Scholar
9 Chakrabarti, U. K., Hobson, W. S., Swaminathan, V., Pearton, S. J., Nakahara, S., Lemont Schnoes, M., and Thomas, P. M., 1st International Conf. on InP and related materials, Oklahoma, USA. 1989.Google Scholar
10 Ren, F., Hobson, W. S., Pearton, S. J., Oster, L. J. and Smith, P. R., IEEE Electron Dev. Lett., EDL–10, 389 (1989).Google Scholar
11 Pearton, S. J., Corbett, J. W. and Shi, T. S., Appl. Phys. A43, 153 (1987).Google Scholar
12 Dautremont-Smith, W. C., Mat. Res. Soc. Symp. Proc. 104, 313 (1988).Google Scholar
13 Chevallier, J. and Aucouturier, M., Ann. Rev. Mat. Sci. 18, 219 (1988).Google Scholar
14 Pearton, S.J., Wu, C. S., Stavola, M., Ren, F., Lopata, J., Dautremont-Smith, W. C., Vemon, S. M. and Haven, V. E., Appl. Phys. Lett., 51, 496 (1987).Google Scholar
15 Pearton, S. J., Dautremont-Smith, W. C., Tu, C. W., and Abemathy, C. R., Phys. Rev. B. 36, 4260 (1987).Google Scholar
16 Iwasaki, H. and Sugibuchi, K., Appl. Phys. Lett., 18, 420 (1971).Google Scholar
17 Romano-Meran, R. and Ashley, K. L., J. Phys. Chem. Solids 34, 427 (1973).Google Scholar
18 Lum, W. Y. and Weider, H. H., J. Appl. Phys. 49, 6187 (1978).Google Scholar
19 Rao, E. V. K. and Duhamel, N., J. Appl. Phys. 49, 3457 (1978).Google Scholar
20 Birey, H. and Sites, J., J. Appl. Phys. 51, 619 (1980).Google Scholar
21 Swaminathan, V., Schumaker, N. E. and Zilko, J. L., J. Luminescence, 22, 153 (1981).Google Scholar
22 Dautremont-Smith, W. C., Nabity, J. C., Swaminathan, V., Stavola, M., Chevallier, J., Tu, C. W., and Pearton, S. J., Appl. Phys. Lett., 49, 1098 (1986).Google Scholar
23 Pavesi, L., Martelli, F., Martin, D., and Reinhart, F. K., Appl. Phys. Lett., 54, 1522 (1989).Google Scholar
24 Weber, J. and Singh, M., Mat. Res. Soc. Symp. Proc. 104, 325 (1988).Google Scholar
25 Swaminathan, V., Lopata, J., Slusky, S. E. G., Dautremont-Smith, W. C., and Pearton, S. J., unpublished.Google Scholar
26 Dingle, R., Phys. Rev. 184, 788 (1969).Google Scholar
27 Hsieh, K., Feng, M. S., Stillman, G. E., Holonyak, N. Jr., Ito, C. R. and Feng, M., Appl. Phys. Lett., 54, 341 (1989).Google Scholar