Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T15:06:42.360Z Has data issue: false hasContentIssue false

In Situ Composites Based on Thermotropic and Flexible Polymers

Published online by Cambridge University Press:  21 February 2011

Guido Crevecoeur
Affiliation:
Catholic University of Leuven, Laboratory for Macromolecular Structural Chemistry, Celestijnenlaan 200 F, B 3030 Leuven, Belgium
Gabriel Groeninckx
Affiliation:
Catholic University of Leuven, Laboratory for Macromolecular Structural Chemistry, Celestijnenlaan 200 F, B 3030 Leuven, Belgium
Get access

Abstract

Blends of a thermotropic liquid crystalline polymer (TLCP) and a thermoplastic matrix were compounded. Upon subsequent injection moulding and spinning, the TLCP was deformed into fine fibrils in the matrix, giving in-situ reinforcement. Especially after spinning, the composite fibres contain fibrils with very high aspect ratio, and exhibit mechanical properties in accordance with simple composite models for modulus and strength.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wiff, D.R., Helminiak, T.E. and Hwang, W.F., in High Modulus Polymers, edited by Zachariades, A.E. (Marcel Dekker, New York, 1988), p. 225 Google Scholar
2. Kiss, G., Polym. Eng. Sci. 27, 410 (1987)Google Scholar
3. Weiss, R.A., Huh, W. and Nicolais, L., Polym. Eng. Sci. 27, 684 (1987)Google Scholar
4. Frayer, P.D., Polym. Comp. 8, 379 (1987)Google Scholar
5. Isayev, A.I. and Modic, M., Polym. Comp. 8, 158 (1987)Google Scholar
6. Brostow, W., Dziemianowicz, T.S., Romanski, J. and Werber, W., Polym. Eng. Sci. 28, 785 (1988)Google Scholar
7. Blizard, K.G. and Baird, D.G., Polym. Eng. Sci. 27, 653 (1987)Google Scholar
8. Lee, B.L., Polym. Eng. Sci. 28, 1107 (1988)Google Scholar
9. Siegmann, A., Dagan, A. and Kenig, S., Polym. 26, 1325 (1985)Google Scholar
10. Nobile, M.R., Amendola, E., Nicolais, L., Acierno, D. and Carfagna, C., Polym. Eng. Sci. 29, 244 (1989)Google Scholar
11. Crevecoeur, G. and Groeninckx, G., submitted Polym. Eng. Sci.Google Scholar
12. Tsebrenko, M.V., Intern. J. Polym. Mater. 10, 83 (1983)Google Scholar
13. Chung, T.S. and McMahon, P.E., J. Appl. Polym. Sci. 31, 965 (1986)Google Scholar
14. Halpin, J.C. and Kardos, J.L., Polym. Eng. Sci. 16, 344 (1986)Google Scholar
15. Piggott, M.R., Loadbearinq Fibre Composites (Pergamon, Oxford, 1980), p. 62 Google Scholar
16. Chung, T.S., J. Polym. Sci. B26, 1549 (1988)Google Scholar
17. Jung, S.H. and Kim, S.C., Polym. J. 20, 73 (1988)Google Scholar
18. Vinogradov, G.V., Krasnikova, N.P., Dreval, V.E., Kotova, E.V., Plotnikova, E.P. and Pelzbauer, Z., Intern. J. Polym. Mater. 9, 187 (1982)Google Scholar
19. Elemans, P.H.M., Ph. D. Thesis, Eindhoven University of Technology, 1989 Google Scholar