Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-08T14:31:26.863Z Has data issue: false hasContentIssue false

In Situ, Real-Time Studies of Film Growth Processes Using Ion Scattering and Direct Recoil Spectroscopy Techniques

Published online by Cambridge University Press:  10 February 2011

V.S. Smentkowskiv
Affiliation:
GE Corporate Research and Development Center, Schenectady, NY 12301. Tel: 518-387-5467, Fax: 518-387-6972, e-mail: smentkow@crd.ge.com
A. R. Krauss
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
O. Auciello
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
J. Im
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D.M. Gruen
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
J. Holecek
Affiliation:
Ionwerks, Houston, TX 77005
K. Waters
Affiliation:
Ionwerks, Houston, TX 77005
J. A. Schultz
Affiliation:
Ionwerks, Houston, TX 77005
Get access

Abstract

Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1–2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is a variant of DRS capable of isotopic resolution for all surface species - including H and He. The advantages and limitations of each of these techniques will be discussed.

The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dual functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aono, M., Nuclear Instruments and Methods in Physics Research B. 2, 374 (1984); J. Moller, W. Heiland, and W. Unertl, Nuclear Instruments and Methods in Physics Research B. 2, 396 (1984).10.1016/0168-583X(84)90226-XGoogle Scholar
[2] Coudray, C., Bernheim, M., and Slodzian, G., Nuclear Instruments and Methods in Physics Research B. 2, 431 (1984); G. Engelmann, and E. Taglauer, Nuclear Instruments and Methods in Physics Research B. 2, 436 (1984)10.1016/0168-583X(84)90237-4Google Scholar
[3] Woodruff, D.P., and Delchar, T.A. Modem Techniques of Surface Science (Cambridge University Press, New York, 1986) pp. 220245.Google Scholar
[4] Krauss, A.R., Rangaswamy, M., Lin, Y., Gruen, D.M., Schultz, J.A., Schmidt, H.K., and Chang, R.P.H., in Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices, edited by Auciello, O., and Engermann, J. (Kluwer Publishing, New York, 1993) pp.251281 10.1007/978-94-011-1727-2_15Google Scholar
[5] Eckstein, W., Nuclear Instruments and Methods in Physics Research B. 27, 78 (1987); W. Eckstein and R. Bastasz, Nuclear Instruments and Methods in Physics Research 29, 603 (1988).10.1016/0168-583X(87)90009-7Google Scholar
[6] Buck, T.M., in Methods of Surface Analysis, edited by Czandema, A.W. (Elsevier, Amsterdam, 1975) pp.75100.10.1016/B978-0-444-41344-4.50010-0Google Scholar
[7] Chen, Y.S., Miller, G.L., D.A.H. Robinson, Wheatley, G.H., and Buck, T.M., Surf. Sci. 62, 133 (1977).10.1016/0039-6028(77)90433-2Google Scholar
[8] Krauss, A.R., Auciello, O., and Schultz, J.A., MRS Bulletin. 20 (5), 18 (1995)10.1557/S0883769400044845Google Scholar
[9] Hammond, M.S., Schultz, J.A., and Krauss, A.R., J. Vac. Sci. Technol. A. 13 (3), 1136 (1995)10.1116/1.579600Google Scholar
[10] Schmidt, H.K., Schultz, J.A., and Zheng, Z., in Diamond and Diamond Like Films and Coatings, edited by Clausing, R.E., Horton, L.L., Angus, J.C., and Koidl, P. (Plenum Press, New York, 1991) p. 669.10.1007/978-1-4684-5967-8_45Google Scholar
[11] Krauss, A.R., Im, J., Schultz, J.A., Smentkowski, V.S., Waters, K., Zuiker, C.D., Gruen, D.M., and Chang, R.P.H., Thin Solid Films. 270, 130 (1995).10.1016/0040-6090(95)06991-7Google Scholar
[12] Rabalais, J.W., Science. 250, 521 (1990); CRC Crit. Rev. Solid State Mater. Sci. 14, 319 (1988).10.1126/science.250.4980.521Google Scholar
[13] Koleske, D.D., Gates, S.M., and Schultz, J.A., J. Chem. Phys. 99 (7), 5619 (1993).10.1063/1.465955Google Scholar
[14] Koleske, D.D., Gates, S.M., Thoms, B.D., Russell, J.N., and Butler, J.E., Surf. Sci. 320, L105 (1994); D.D. Koleske, S.M. Gates, B.D. Thorns, J.N. Russell, and J.E. Butler, J. Chem. Phys. 102 (2), 992 (1995)10.1016/0039-6028(94)90306-9Google Scholar
[15] Poschenrieder, W.P., Intern. J. Mass Spectrom. Ion Phys. 9, 357 (1972).10.1016/0020-7381(72)80020-2Google Scholar
[16] Karataev, V.I., Mamyrin, B.A., and Shimikk, D.V., Soy. Phys. Tech. Phys. 16, 1177 (1972); B.A. Mamyrin, V.I. Karataev, D.V. Shmikk, and V.A. Zagulin, Soy. Phys.-JETP. 37 (1), 45 (1973).Google Scholar
[17] Smentkowski, V.S., Krauss, A.R., Gruen, D.M., Holecek, J.C., and Schultz, J.A., J. Vac. Sci. Technol. A. in print, 1999.Google Scholar
[18] Waters, K., Bensaoula, A., Schultz, A., Eipers-Smith, K., and Freundlich, A., J. of Crystal Growth. 127, 972 (1993).10.1016/0022-0248(93)90770-WGoogle Scholar
[19] Eipers-Smith, K., Waters, K., and Schultz, J.A., J. of the American Ceramic Society. 76 (2), 84 (1993).10.1111/j.1151-2916.1993.tb03781.xGoogle Scholar
[20] Diebold, U., Pan, J-M., and Madey, T.E., Surf. Sci. 331–333, 845 (1995); F. Pesty, H-P. Steinruck, and T.E. Madey, Surf. Sci. 339, 83 (1995); C. Dong, L. Zhang, U. Diebold, and T.E. Madey, Surf. Sci. 322, 221 (1995).10.1016/0039-6028(95)00124-7Google Scholar
[21] Wu, Y., Garfunkel, E., and Madey, T.E., J. Vac. Sci. Technol. A. 14 (3), 1662 (1996); H.-P. Steinruck, F. Pesty, L. Zhang, and T.E. Madey, Physical Review B. 51 (4), 2427 (1995).10.1116/1.580315Google Scholar
[22] Benninghoven, A., Z.Physik 230, 403 (1970); Surf. Sci. 299/300, 246 (1994); Phys. Status Solid. 34, k169 (1969).10.1007/BF01394486Google Scholar
[23] Sigmund, P. in Sputtering by Particle Bombardment I. Springer Series Topics in Applied Physics Vol 47, edited by Behrisch, R. (Springer Verlag: Berlin and Heidelberg, 1981) p27.Google Scholar
[24] Hagstrum, H. D., Phys. Rev. 96 (2), 336 (1954).10.1103/PhysRev.96.336Google Scholar
[25] Lin, Y., Krauss, A.R., Chang, R.P.H., Auciello, O.H., Gruen, D.M., and Schultz, J.A., Thin Solid Films. 253, 247 (1994).10.1016/0040-6090(94)90329-8Google Scholar
[26] Im, J., Krauss, A.R., Lin, Y., Schultz, J.A., Auciello, O.H., Gruen, D.M., and Chang, R.P.H., Nuclear Instruments and Methods in Physics Research B. 118, 772 (1996).10.1016/0168-583X(95)01205-2Google Scholar
[27] Smentkowski, V.S., Holecek, J.C., Schultz, J.A., Krauss, A.R., and Gruen, D.M., in Secondary Ion Mass Spectrometry, SIMS XI, edited by Gillen, G., Lareau, R., Bennett, J., and Stevie, F. (John Wiley and Sons, New York, 1997) p.1083.Google Scholar
[28] Phelps, A.V., J. Phys. Chem. Ref. Data. 20, 557 (1991).10.1063/1.555889Google Scholar
[29] Krauss, A.R., Im, J., Smentkowski, V.S., Schultz, J.A., Auciello, O., Gruen, D.M., Holecek, J., and Chang, R.P.H., Materials Science and Engineering A. 253, 221 (1998).10.1016/S0921-5093(98)00730-8Google Scholar
[30] lonwerks, 2472 Bolsover, Suite 255, Houston, Texas 77005, tel: 713-522-9880, fax: 713-522-6735, http://www.ionwerks.comGoogle Scholar
[31] Krauss, A.R., Lin, Y., Auciello, O., Lamich, G.J., Gruen, D.M., Schultz, J.A., and Chang, R.P.H., J. Vac. Sci. Technol. A. 12 (4), 1943 (1994).10.1116/1.578987Google Scholar
[32] Auciello, O., Krauss, A.R., Im, J., Gruen, D.M., Irene, E.A., Chang, R.P.H., and McGuire, G.E., Appl. Phys. Lett. 69 (18), 2671 (1996).10.1063/1.117554Google Scholar
[33] Kim, E., Bensaoula, A., Rusakova, I., Schultz, A., and Waters, K., Mat. Res. Soc. Symp. Proc. 449, 318 (1997).Google Scholar
[34] Kim, E., Berishev, I., Bensaoula, A., Lee, S., Perry, S.S., Waters, K., and Schultz, J.A., Appl. Phys. Lett. 71, 21 (1997); E. Kim, I. Berishev, A. Bensaoula, I. Rusakova, KI. Waters, and J.A. Schultz, J. Appl. Phys. 85, 1178 (1999).Google Scholar
[35] Bensaoula, A., Rusakova, I., Schultz, J.A., and Waters, K., in III-V Nitrides, edited by Moustakas, T., Monemar, B., Akasaki, I., Ponce, F., (Mater. Res. Soc. Proc. 449, Pittsbrugh, PA, 1997) pp. 319; E. Kim, I. Berishev, A. Bensaoula, J.A. Schultz, K. Waters, and W.Zagozdzon-Wosik, MRS Internet Journal of Nitride Semiconductor Research, 3, 22 (1998); http://nsr.mij.mrs.org/3/22/Google Scholar
[36] Bensaoula, A., presented at the 1999 MRS Spring Meeting (Symposium U, talk U1.2), San Francisco, CA,1999 (unpublished).Google Scholar
[37] Bensaoula, A., presented at the 45 International Meeting of the AVS, Baltimore, MA, 1998 (in press - spring/summer 1999).Google Scholar