Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T20:13:58.547Z Has data issue: false hasContentIssue false

In Situ X-Ray Diffraction and In Situ X-Ray Absorption Spectroscopy for Investigation of Intercalation Batteries: Application to the Alkaline H+/γ-MnO2 system.

Published online by Cambridge University Press:  28 February 2011

C. Lévy-Clèment
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1, place A. Briand, 92195 MEUDON, FRANCE
C. Mondoloni
Affiliation:
Laboratoire de Physique des Solides de Bellevue, CNRS, 1, place A. Briand, 92195 MEUDON, FRANCE
C. Godart
Affiliation:
Laboratoire de Métallurgie des terres rares, CNRS, 1, place A. Briand 92195 MEUDON, FRANCE
R. Cortès
Affiliation:
LURE, 91405 ORSAY, FRANCE and Laboratoire d'Electrochimie et Phys. des liquides- Rue Vauquelin- 75005 PARIS, FRANCE
Get access

Abstract

This paper presents applications of in situ X-ray diffraction and absorption techniques to the study of H+/MnO2 alkaline batteries. The two complementary in situ techniques are described. Investigation of the electrochemical insertion and deinsertion of H+ has been made through its influence on the evolution of the crystallographic structure of γ-MnO2, while investigation of the transfer of e has been undertaken through the variation of the oxidation state of the manganese during the discharging and charging process of a battery. New insights in the understanding of the mechanisms of proton insertion and charge transfer into γ-MnO2 are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Manganese dioxide symposiums, Vol. 1, 2, 3, I.C. Sample Office Publisher, Cleveland, U.S.A., Cleveland (1875), Tokyo (1980), Gratz (1985).Google Scholar
2. Ruetschi, P., J. Electrochem. Soc., 131, 298c (1984); and 135, 2657 (1988).CrossRefGoogle Scholar
3. Wolf, P.M. de, Acta Cryst., 12, 341 (1959).CrossRefGoogle Scholar
4. Priesler, E., J. of Apl. Electrochem., 6, 301 (1976).CrossRefGoogle Scholar
5. a) Brenet, J., Acad, C.R.. Sciences, 242, 111 (1956); b) Von H. Bode, A. Schmier and D. Berndt, Zeitschrift für Electrochemie, 66, 586 (1962)Google Scholar
6. a) Gabano, J.P., Morignat, B. and Laurent, J.F., Electrochim. Acta, 9, 1093 (1964); b) J.P. Gabano, B. Morignat, E. Fialdes, B. Emery and J.F. Laurent, Z. Phys. Chem., 46, 359 (1965).CrossRefGoogle Scholar
7. Cahoon, N.C. and , Kover, J. Electrochem. Soc.,106, 745 (1959).CrossRefGoogle Scholar
8. Bell, G.S. and Huber, R., J. Electrochem. Soc., 111, 1 (1964); and Electrochim. Acts, 10, 509 (1965).CrossRefGoogle Scholar
9. Boden, D., Venuto, C.J., Wisler, D. and Wylie, R.B., J. Electrochem. Soc. 114, 415 (1967).CrossRefGoogle Scholar
10. McBreen, J., Electrochim. Acta, 20, 221 (1975).CrossRefGoogle Scholar
11. Maskell, W.C., Shaw, J.E.A. and Tye, F.L., Electrochim. Acta, 26, 1403 (1981); 27, 425 (1982); 28, 225 (1983); 28, 231 (1983) and ref. therein; J. Power Sources, 8, 113 (1982); J. Appl. Electrochem., 12, 101 (1982).CrossRefGoogle Scholar
12. Boden, D., Venuto, C.J., Wisler, D. and Wylie, R.B., J. Electrochem. Soc., 115, 333 (1968).CrossRefGoogle Scholar
13. Kordesch, K., Gsellmann, J., Pern, M., Tomantschger, K. and Chemelli, R., Electrochim. Acta, 26, 1495 (1981).CrossRefGoogle Scholar
14. Mondoloni, C., Rioux, J. and Lévy-Clément, C., Proc. Conf. on “Accumulateurs Electrochimiques, Evolution et Techniques Récentes”, Eds. SEE, (Paris), p. 109116 (1989).Google Scholar
15. , Kozawa and Yeager, Y, J. Electrochem. Soc., 112, 959 (1965).CrossRefGoogle Scholar
16. Kozawa, A. and Powers, R. A., J. Electrochem. Soc., 113, 870 (1966).CrossRefGoogle Scholar
17. Chianelli, R.R., Scanlon, J.C. and Rao, B.M.L., J. Electrochem. Soc., 125, 1563 (1978).CrossRefGoogle Scholar
18. Dahn, J.R., Py, M.A. and Haering, R.R., Can. J. Phys., 60, 307 (1982).CrossRefGoogle Scholar
19. Tarascon, J.M., Hull, G.W., Marsh, P. and Haar, L. Ter, J. Solid State Chem., 66, 204 (1987).CrossRefGoogle Scholar
20. Levy-Clement, C., in Chemical Physics of Intercalation, Legrand, A.P. and Flandrois, S., eds., NATO ASI Series, Series B: Physics, vol. 172, 447455 (1988) and references therein.CrossRefGoogle Scholar
21. Lévy-Clément, C., Mondolini, C., Latroche, M., Godart, C. and Cortes, R. to be published.Google Scholar
22. Apte, M.Y. and Mande, C., J. Phys. Chem. Solids, 41, 307 (1980).CrossRefGoogle Scholar
23. Belli, M., Scafati, A., Bianconi, A., Mobilio, S., Palladino, L. and Reale, A., Solid State Commumications, 35, 355361 (1980).CrossRefGoogle Scholar
24. Cartier, C., Verdaguer, M., Ménage, S., Girerd, J.J., Tuchagues, J.P. and Mabad, B., Journal de Physique, 47, C8623 (1986); C. Cartier, These d'4tat, Universit6 Paris XI, Orsay (1988).Google Scholar
25. see for example: Teo, B.K., EXAFS Basic Principles and Data Analysis, Springer, Berlin (1986).CrossRefGoogle Scholar
26. Apte, M.Y. and Mande, C., J. Phys. C: Solid State Phys., 15, 607 (1982).CrossRefGoogle Scholar
27. Pandya, K.I., Hoffman, R.W., McBree, J. and O'Grady, W.E., J. Electrochem. Soc., 137, 383 (1990).CrossRefGoogle Scholar