Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-14T10:08:54.254Z Has data issue: false hasContentIssue false

Indentation at the Nanometer Scale on Ultra Thin Films of Diamond-Like Carbon

Published online by Cambridge University Press:  21 February 2011

Sandrine Bec
Affiliation:
Laboratoire de Tribologie et Dynamique des Systemes, URA CNRS 855, Ecole Centrale de Lyon, B.P. 163, 69131 ECULLY Cedex, FRANCE
André Tonck
Affiliation:
Laboratoire de Tribologie et Dynamique des Systemes, URA CNRS 855, Ecole Centrale de Lyon, B.P. 163, 69131 ECULLY Cedex, FRANCE
Jean-Luc Loubet
Affiliation:
Laboratoire de Tribologie et Dynamique des Systemes, URA CNRS 855, Ecole Centrale de Lyon, B.P. 163, 69131 ECULLY Cedex, FRANCE
Get access

Abstract

Ultra thin films (50 nm and 180 nm) of amorphous diamond-like carbon on a silicon substrate produced by laser ablation are tested by nanoindentation with a new instrument deriving from a Surface Force Apparatus. Quasi-static measurements of the load and dynamic measurements of the contact stiffness are continuously and simultaneously recorded versus the penetration depth. Scanning lines on the tested surface before and after indentation are made by means of tangential displacement of the diamond indenter on the surface.

The tests are conducted with maximum loads from 50 μN to 2500 μN, which correspond to maximum indentation depths between 7 nm and 70 nm. The indentation curves show near elastic recovery but scanning lines and/or topographic images on the surfaces show detectable plastic prints. Despite the extremely small residual indentation depths for these ultra thin films, we show how the hardness value we calculate from the indentation curves with an elastoplastic theory is in good agreement with the hardness value we calculate from the indentation print profile. The determination of the Young's modulus, even at the smallest indentation depths, must take into account the mechanical properties of the substrate. The determination of both values, hardness and elastic modulus, also requires a calibration procedure for the geometry of the tip and knowledge of the piling-up effect.

We find that the apparent hardness and the apparent Young's modulus of the tested diamondlike films are high. They are underestimated in comparison with the real values. A rough correction which overestimates the Young’s modulus gives higher values than those of natural diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grill, A., Meyerson, B. S., Patel, V. V., IBM J. Res. Develop., 34 (6), 849 (1990).Google Scholar
2. Beetz, C. P. Jr, Cooper, C. V., Perry, T. A., J. Mater. Res., 5 (11), 2555 (1990).Google Scholar
3. Davanloo, F., Juengerman, E. M., Jander, D. R., Lee, T. J., Collins, C. B., J. Appl. Phys., 67 (4), 2081 (1990).Google Scholar
4. Germain, C., Giraud, C., Aubreton, J., Catherinot, A., Diamond and Related Materials, 3, 598 (1994).Google Scholar
5. Savvides, N., Bell, T. J., J. Appl. Phys. 72 (7), 2791 (1992); Thin Solid Films, 228, 289 (1993).Google Scholar
6. Collins, C. B., Davanloo, F., Lee, T. J., You, J. H., Park, H. in Laser Ablation in Materials Processing : Fundamentals and Applications edited by Braren, B., Dubowski, J., Norton, D. (Mater. Res. Soc. Proc. 285, Pittsburgh, PA, 1992) pp 547555.Google Scholar
7. Pivin, J. C., Thin Solid Films, 229, 83 (1993).Google Scholar
8. Georges, J.M., Tonck, A., Mazuyer, D., Wear, 175 (1), 59 (1994).Google Scholar
9. Georges, JM., Millot, S., Loubet, JL., Tonck, A., J. Chem. Phys, 98 (9), 7345 (1993).Google Scholar
10. Doerner, M. F., Nix, W. D., J. Mater. Res. 1 (4), 601 (1986).Google Scholar
11. Oliver, W. C., Pharr, G. M., J. Mater. Res. 7 (6), 1564 (1992).Google Scholar
12. Pethica, J. B., Hutchinson, R., Oliver, W.C., Philos. Mag. A, 48, 593 (1983).Google Scholar
13. McCormick, N. J., Gee, M. G., Hall, D. J., in Thin Films : Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr, Irgesen, P. B (Mater. Res. Soc. Proc. 308, Pittsburgh, PA, 1993) pp 195555.Google Scholar
14. Loubet, J.L., Bauer, M., Tonck, A., Bee, S. and Gauthier-Manuel, B., in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures. NATO Advanced Study Institute, edited by. Nastasi, M. A., Kluwer Academic Publishers, Netherlands (1993) pp 429447.Google Scholar
15. Loubet, J.L., Georges, J. M., Meille, G. in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P. J. and Lawn, B. R., American Society for Testing and Materials, Philadelphia (1986) pp 72–89.Google Scholar
16. Bauer, M., PhD thesis, Ecole Centrale de Lyon, n 91 8, 1991.Google Scholar
17. Bee, S., PhD thesis, Ecole Centrale de Lyon, n 92-62, 1992.Google Scholar
18. Germain, C., PhD thesis, Universite de Limoges n 47–1993, 1993.Google Scholar
19. Germain, C., Giraud, C., Aubreton, J., Catherinot, A., Bee, S., Tonck, A., submitted to Diamond and Related Materials.Google Scholar
20. Laursen, T. A., Simo, J.C., J. Mater. Res. 7 (3), 618 (1992).Google Scholar