Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-08T20:27:39.396Z Has data issue: false hasContentIssue false

Inductively Coupled Plasma Etching of III-Nitrides in Cl2/Xe, Cl2/Ar AND Cl2/He

Published online by Cambridge University Press:  15 February 2011

Hyun Cho
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
Y.B. Hahn
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
D.C. Hays
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
K.B. Jung
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
S.M. Donovan
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
C.R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
S.J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
R.J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185
Get access

Abstract

The role of additive noble gases He, Ar and Xe to Cl2-based Inductively Coupled Plasmas for etching of GaN, AIN and InN were examined. The etch rates were a strong function of chlorine concentration, rf chuck power and ICP source power. The highest etch rates for InN were obtained with Cl2/Xe, while the highest rates for AIN and GaN were obtained with Cl2/He. Efficient breaking of the III-nitrogen bond is crucial for attaining high etch rates. The InN etching was dominated by physical sputtering, in contrast to GaN and AIN. In the latter cases, the etch rates were limited by initial breaking of the III-nitrogen bond. Maximum selectivities of ∼ 80 for InN to GaN and InN to AIN were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shul, R. J., McClellan, G. B., Casalnuova, S. A., Rieger, D. J., Pearton, S. J., Constantine, C., Barrat, C., Karlicek, R. F. Jr, Tran, C., and Schurman, M., Appl. Phys. Lett., 69 1119 (1996).Google Scholar
2. Shul, R. J., in GaN and Related Materials, ed. Pearton, S. J. (Gordon and Breach, N. Y., 1997).Google Scholar
3. Gillis, H. P., Choutov, D. A., and Martin, K. P., JOM, 48 50 (1996).Google Scholar
4. Adesida, I., Mahajan, A., Andideh, E., Khan, M. A., Olsen, D. T., and Kuznia, J. N., Appl. Phys. Lett., 63 2777 (1993).Google Scholar
5. Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H., and Morkoc, H., Appl. Phys. Lett., 64 887 (1994).Google Scholar
6. Lee, H., Oberman, D. B., and Harris, J. S. Jr, Appl. Phys. Lett., 67 1754 (1995).Google Scholar
7. Pletschen, W., Niegurch, R., and Bachem, K. H., Proc. Symp. Wide Bandgap Semiconductors and Devices, Vol. 95–21 (Electorchemcal Society, Pennington, N. J., 1995), p.241.Google Scholar
8. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett., 64 2294 (1994).Google Scholar
9. Zhang, L., Ramer, J., Brown, J., Zhang, K., Lester, L.F., and Hersee, S. D., Appl. Phys. Lett., 68 367 (1996).Google Scholar
10. Shul, R. J., Briggs, R. D., Pearton, S. J., Vartuli, C. B., Abernathy, C. R., Lee, J. W., Constantine, C., and Barratt, C., Mat. Res. Soc. Symp. Proc., 449 969 (1997).Google Scholar
11. Cho, H., Vartuli, C. B., Donovan, S. M., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Constantine, C., J. Vac. Sci. Technol. A 16 1631 (1998).Google Scholar
12. Cho, H., Vartuli, C. B., Donovan, S. M., Mackenzie, K. D., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Constantine, C., J. Electron. Mat., 27 166 (1998).Google Scholar
13. Nakamura, S., in GaN and Related Materials, ed. Pearton, S. J. (Gordon and Breach, N. Y. 1997).Google Scholar
14. Aktas, O., Fan, Z., Mohammad, S. N., Botcharev, A., and Morkoc, H., Appl. Phys. Lett., 69 25 (1996).Google Scholar
15. Khan, M. A., Kuznia, J. N., Shur, M. S., Eppens, C., Burm, J., and Schaff, W., Appl. Phys. Lett., 66 1083 (1995).Google Scholar
16. Wu, Y. F., Keller, B. P., Keller, S., Kapolnek, D., Baars, S. D. Den, and Mishra, U. K., IEEE Electron. Dev. Lett., 17 455 (1996).Google Scholar
17. Khan, M. A., Chen, Q., Shur, M. S., McDermott, B. T., Higgins, J. A., Burm, J., Schaff, W., and Eastman, L. F., Elecrtron. Lett., 32 357 (1996).Google Scholar
18. Wu, Y. T., Keller, S., Kozodoy, P., Keller, B. P., Parikh, P., Kapolnek, D., Denbaars, S. P., and Mishra, V. K., IEEE Electron. Dev. Lett., 18 290 (1997).Google Scholar
19. Abernathy, C. R., J. Vac. Sci. Technol. A 11 869 (1993).Google Scholar
20. Abernathy, C. R., Mat. Sci. Eng. Rep., R14 203 (1995).Google Scholar
21. Lee, J. W., Hong, J., and Pearton, S. J., Appl. Phys. Lett., 68 847 (1996).Google Scholar
22. CRC Handbook of Chemistry and Physics, 70th Ed., eds. Weast, R. C., Lide, D. R., Astle, M. J., and Beyer, W. H. (CRC Press Inc., Boca Raron, FL, 1989).Google Scholar
23. Burm, J., Chu, K., Schaff, W. J., Eastman, L. F., Khan, M. A., Chen, Q., Yang, J. W., and Shur, M. S., IEEE Electron. Dev. Lett., 18 141 (1997).Google Scholar
24. Donovan, S. M., MacKenzie, K. D., Abernathy, C. R., Pearton, S. J., Ren, F., Jones, K., and Cole, M., Appl. Phys. Lett., 70 2592 (1997).Google Scholar
25. Ren, F., Abernathy, C. R., Pearton, S. J., and Wisk, P. W., Appl. Phys. Lett., 64 1508 (1994).Google Scholar
26. Ren, F., Shul, R. J., Abernathy, C. R., Chu, S. N. G., Lothian, J. R., and Pearton, S. J., Appl. Phys. Lett., 66 1503 (1995).Google Scholar