Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-23T15:46:46.987Z Has data issue: false hasContentIssue false

Influence of post-deposition annealing on structural, optical and electrical characteristics of NiO/ZnO thin film hetero-junction

Published online by Cambridge University Press:  07 March 2012

Manisha Tyagi
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, INDIA
Monika Tomar
Affiliation:
Physics Department, Miranda House, University of Delhi, Delhi-110007, INDIA
Vinay Gupta*
Affiliation:
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, INDIA
Get access

Abstract

Transparent p-n hetero-junction diodes are fabricated using, p-type NiO and n-type ZnO thin films deposited onto a Pt/Ti/glass substrate utilizing RF sputtering technique. The prepared hetero-junctions are studied for the structural, electrical and optical properties and the effect of post-deposition annealing is investigated through I-V measurements and XRD analysis. The as deposited hetero-junction is found to be giving ohmic behaviour while with post-annealing treatment it result in rectification with a ratio of forward-to-reverse current as high as 15 in the range -1.0 to 1.0 V. Forward threshold and the reverse breakdown voltages are found to be about 0.5 and -2.7 V, respectively. The forward-bias I-V characteristics are dominated by the flow of space-charge-limited current with an optical transmission of above 50 % in the visible region important for the transparent electronic device fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Miura, N., Wang, J., Nakatou, M., Elumalai, P., and Hasei, M., Electrochem. Solid-State Lett. 8, H9 (2005).Google Scholar
2. Ohta, H., Kawamura, K., Orita, M., Hirano, M., Sarukura, N., and Hosono, H., Appl. Phys. Lett. 77, 475 (2000).Google Scholar
3. Hoffman, R. L., Norris, B. J., and Wager, J. F., Appl. Phys. Lett. 82, 733 (2003).Google Scholar
4. Guo, X. L., Choi, J. H., Tabata, H., and Kawai, T., Jpn. J. Appl. Phys. 40, L177 (2001).Google Scholar
5. Ohta, H., Hirano, M., Nakahara, K., Maruta, H., Tanabe, T., Kamiya, M., Kamiya, T., and Hosono, H., Appl. Phys. Lett. 83, 1029 (2003).Google Scholar
6. Lee, W. Y., Mauri, D., and Wang, C. H., Appl. Phys. Lett. 72, 1584 (1998).Google Scholar
7. Gupta, V., Mansingh, A., Journal of Applied Physics 80, 1063 (1996).Google Scholar
8. Sato, H., Minami, T., Takata, S., and Yamada, T., Thin Solid Films 236, 27 (1993).Google Scholar
9. Puspharajah, P., Radhakrishna, S., Aroif, A.K., J. Mater. Sci. 32 (1997) 3001.Google Scholar
10. Patil, P.S., Kadam, L.D., Appl. Surf. Sci. 199 (2002) 211.Google Scholar
11. Marottia, R.E., Guerraa, D.N., Bellob, C., Machadoa, G., Dalchielea, E.A., Sol. Energy Mater. Sol. Cells 82 (2004) 85.Google Scholar
12. Cattin, L., Reguig, B.A., Khelil, A., Morsli, M., Benchouk, K., Bernede, J.C., Appl. Surf. Sci. 254, 5814 (2008).Google Scholar
13. Jayaraj, M.K., Draeseke, A.D., Tate, J., Hoffman, R.L., Wager, J.F., Proc. Mat. Res. Soc. Symp. 666(F4), 1 (2001).Google Scholar
14. Shah, J.M., Li, Y.L., Gessmann, T., Schubert, E.F., J. Appl. Phys. 94, 2627 (2003).Google Scholar
15. Nahass, M.M.E., Rahman, K.F.A., Darwish, A.A.A., Microelect. J. 38, 91 (2007).Google Scholar
16. Singh, R., Narula, A.K., Appl. Phys. Lett. 71, 2845 (1997).Google Scholar