Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T04:24:53.328Z Has data issue: false hasContentIssue false

Initial Growth and morphology of Ultrathin Magnetic Films Studied Using Scanning Tunneling Microscopy.

Published online by Cambridge University Press:  03 September 2012

David D. Chambliss
Affiliation:
IBM Research Division, Almadén Research Center, 650 Harry Road, San Jose, California 95120–6099
K.E. Johnson
Affiliation:
IBM Research Division, Almadén Research Center, 650 Harry Road, San Jose, California 95120–6099
K. Kalki
Affiliation:
IBM Research Division, Almadén Research Center, 650 Harry Road, San Jose, California 95120–6099
S. Chiang
Affiliation:
IBM Research Division, Almadén Research Center, 650 Harry Road, San Jose, California 95120–6099
R.J. Wilson
Affiliation:
IBM Research Division, Almadén Research Center, 650 Harry Road, San Jose, California 95120–6099
Get access

Abstract

The room-temperature growth of Fe on Cu(100) has been studied using the scanning tunneling Microscope (STM) to determine low-coverage growth mode and local structures related to the FCC-BCC structural transformation. Results for submonolayer deposition demonstrate an initial interchange of deposited Fe atoms with substrate Cu. This leads to a highly rough Fe-Cu interface and growth characteristics that for different experimental techniques can resemble 3-D island growth or layer-by-layer growth. For a thickness ∼14 Monolayers, the FCC-BCC transition is observed to occur via the formation of fairly large martensitic grains, rather than by a change in atomic aggregation. The implications of the instability of FCC-Fe, as evident in both low- and high-coverage data, are considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Oncllion, M., Thompson, M. A., Fu, J. L., Erskine, J. L., and Freeman, A. J., Phys. Rev. B 33, 7322 (1986).Google Scholar
2 Pescia, D., Stampanoni, M., Bona, G. L., Vaterlaus, A., Meier, F., Jennings, G., and Willis, R. F., Phys. Rev. Lett. 60, 2559 (1988).Google Scholar
3 Glatzel, H., Fauster, T., Scherzer, B. M., and Dose, V., Surf. Sci. 254, 58 (1992).Google Scholar
4 Chambers, S. A., Wagener, T. J., and Weaver, J. H., Phys. Rev. B 36, 8992 (1987).Google Scholar
5 Steigerwald, D. A., Jacob, I., and Egelhoff, W. F. Jr, Surf. Sci. 202, 472 (1988).Google Scholar
6 Steigerwald, D. A. and Egelhoff, W. F. Jr, Surf. Sci. 192, L887 (1987).Google Scholar
7 Thomassen, J., Feldmann, B., and Wuttig, M., Surf Sci. 264, 406 (1992).Google Scholar
8 Arnott, M., McCash, E. M., and Allison, W., Surf Sci. 269/270, 724 (1992).Google Scholar
9 Dastoor, P., Arnott, M., McCash, E. M., and Allison, W., Surf Sci. 272, 154 (1992).Google Scholar
10 Chambliss, D. D., Wilson, R. J., and Chiang, S., J. Vac. Sci. Technol. B 10, 1993 (1992).Google Scholar
11 Johnson, K. E., Chambliss, D. D., Wilson, R. J., and Chiang, S., J. Vac. Sci. Technol. A 11, xxxx (1993).Google Scholar
12 Johnson, K. E., Chambliss, D. D., Wilson, R. J., and Chiang, S., (to be published).Google Scholar
13 Thomassen, J., May, F., Feldmann, B., Wuttig, M., and Ibach, H., Phys. Rev. Lett. 69, 3831 (1992).Google Scholar
14 Koike, J. and Nastasi, M., in Evolution of Thin Film anti Surface Microslruclure (Mat. Res. Soc. Proc., Vol. 202, Pittsburgh, PA, 1991), p. 13.Google Scholar
15 Wuttig, M., Feldmann, B., Thomassen, J., May, F., Zillgen, H., Brodde, A., Ilannemann, H., and Neddermeyer, H., (to be published).Google Scholar
16 Pitsch, W., Phil. Mag. 4, 477 (1959).Google Scholar
17 Xhonneux, P. and Courtens, E., Phys. Rev. B 46, 556 (1992).Google Scholar
18 Chiang, S., Wilson, R. J., Gerber, C., and Hallmark, V. M., J. Vac. Sci. Technol. B 6, 386 (1988).Google Scholar
19 Egelhoff, W. E. Jr, J. Vac. Sci. Technol. B 3, 1511 (1985).Google Scholar
20 Johnson, K. E. and Chambliss, D. D., (to bc published).Google Scholar
21 Feibelman, P. J., Phys. Rev. Lett. 65, 729 (1990).Google Scholar
22 Rousset, S., Chiang, S., Fowler, D. E., and Chambliss, D. D., Phys. Rev. Lett. 69, 3200 (1992).Google Scholar
23 Chiang, S., (private communication).Google Scholar
24 Wayman, C. M., in Physical Metallurgy, edited by Cahn, R. W. and Haasen, P. (North-Holland, New York, 1983), pp. 10311074.Google Scholar
25 Chambliss, D. D., Wilson, R. J., and Chiang, S., Phys. Rev. Lett. 66, 1721 (1991).Google Scholar
26 Alerhand, O., Vandcrbilt, D., Meade, R., and Joannopoulos, J., Phys. Rev. Lett. 61, 1973 (1988).Google Scholar
27 Narasimhan, S. and Vanderbilt, D., Phys. Rev. Lett. 69, 1564 (1992).Google Scholar
28 Chambliss, D. D. and Wilson, R. J., J. Vac. Sci. Technol. B 9, 928 (1991).Google Scholar
29 Albrecht, M., Fritzsche, H., and Gradmann, U., presented at the 1993 MRS Spring Meeting, San Francisco, CA, 1993 (unpublished).Google Scholar
30 Daum, W., Stuhlman, C., and Ibach, H., Phys. Rev. Lett. 60, 2741 (1988).Google Scholar