Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-23T17:24:29.143Z Has data issue: false hasContentIssue false

The Initial Stages of Growth of Ordered GaInP and GaInAs Grown by Metal Organic Vapor Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

M. C. Hanna
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
A. Mascarenhas
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Hyeonsik M. Cheong
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

We have used atomic force microscopy (AFM) and Raman spectroscopy to investigate the development of the surface morphology of (001) direct and vicinal GaInP and GaInAs grown under conditions to produce strong CUPtB ordering. Raman spectroscopy provided direct evidence of CuPtB ordering in layers as thin as 10 nm for GaInP and 5 nm for GaInAs. We find that the morphology of GaInP and GaInAs on (001)6B substrates consists of ridges, which are aligned predominately along the [110] direction (A-direction). These ridges are well developed even at layer thicknesses of 2 nm, and their sides consist of step-bunches and near (001) terraces. On (001) direct substrates, the GaInP morphology is similar to that obtained on 6B substrates, although the step bunches have no preferential orientation, while GaInAs (001) growth proceeds by a combination of 2D-island and step flow growth. We discuss possible reasons for the differences in the morphology of ordered GaInP and GaInAs. The results of this work suggest it may be difficult to produce abrupt heterointerfaces in structures containing ordered GalnP and GaInAs alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: Sogang University, 121–742 Shinsoo-Dong 1, Mapo-Ku, Seoul, Korea

References

REFERENCES

[.Lee, M.K., Horng, R.H., and Haung, L.C., J. Appl. Phys. 72, 5420 (1992).Google Scholar
[.Olson, J.M., Kurtz, S.R., Kibbler, A.E., and Faine, P., Appl. Phys. Lett. 56, 623 (1990).Google Scholar
[.Driessen, F.A.J.M., Bauhuis, G.J., Hageman, P.R., and Giling, L.J., Appl. Phys. Lett. 65, 714 (1994).Google Scholar
[.Geng, C., Moritz, A., Heppel, S., Muhe, A., Kuhn, J., Ernst, P., Schweizer, H., Phillipp, F., Hangleiter, A., and Scholz, F., J. Crystal Growth 170, 418 (1997).Google Scholar
[.Su, L.C., Ho, I.H., Kobayashi, N., and Stringfellow, G.B., J. Crystal Growth 145, 140 (1994).Google Scholar
[.Chun, Y.S., Murata, H., Ho, I.H., Hsu, T.C., and Stringfellow, G.B., J. Crystal Growth 170, 263 (1997).Google Scholar
[.Lee, S.H. and Stringfellow, G.B., J. Appl. Phys. 83, 3620 (1998).Google Scholar
[.Pietzonka, I., Sass, T., Franzheld, R., Wagner, G., and Gottschalch, V., J. Crystal Growth 195, 21 (1998).Google Scholar
[.Su, L.C. and Stringfellow, G.B., J. Appl. Phys. 78, 6775 (1995).Google Scholar
[0.Nasi, L., Salviati, G., Mazzer, M., and Zanotti-Fregonara, C., Appl. Phys. Lett. 68, 3263 (1996).Google Scholar
[1.Friedman, D.J., Zhu, J.G., Kibbler, A.E., Olson, J.M., and Moreland, J., Appl. Phys. Lett. 63, 1774 (1993).Google Scholar
[2.Gomyo, A., Hotta, H., Miyasaka, F., Tada, K., Fujii, H., Fukagai, K., Kobayashi, K., and Hino, I., J. Crystal Growth 145, 126 (1994).Google Scholar
[3.Stringfellow, G.B., Su, L.C., Strausser, Y.E., and Thorton, J.T., Appl. Phys. Lett. 66, 3155 (1995).Google Scholar
[4.Seong, T.-Y., Booker, G.R., Norman, A.G., Harris, P.J.F., and Cullis, A.G., Inst. Phys. Conf. Ser. 146, 241 (1995).Google Scholar
[5.Norman, A.G., Butler, B.R., Booker, G.R., and Thrush, E.J., Inst. Phys. Conf. Ser. 100, 10 (1989).Google Scholar
[6.Dumont, H., Auvray, L., Dazord, J., Souliere, V., Monteil, Y., Bouix, J., and Ougazzaden, A., J. Crystal Growth 197, 755 (1999).Google Scholar
[7.Su, L.C. and Stringfellow, G.B., Appl. Phys. Lett. 67, 3626 (1995).Google Scholar
[8.Lee, S.H., Hsu, Y., and Stringfellow, G.B., J. Electron. Mater. 26, 1244 (1997).Google Scholar
[9.Friedman, D.J., Homer, G.S., Kurtz, S.R., Bertness, K.A., Olson, J.M., and Moreland, J., Appl. Phys. Lett. 65,878 (1994).Google Scholar
[0.Stringfellow, G.B. and Su, L.C., J. Crystal Growth 163, 128 (1996).Google Scholar
[1.Seong, T.Y., Norman, A.G., Booker, G.R., and Cullis, A.G., J. Appl. Phys. 75, 7852 (1994).Google Scholar
[2.Cheong, H.M., Mascarenhas, A., Ernst, P., and Geng, C., Phys. Rev. B 56, 1182 (1997).Google Scholar
[3.Cheong, H.M., Ahrenkiel, S.P., Hanna, M.C., and Mascarenhas, A., Appl. Phys. Lett. 73, 2648 (1998).Google Scholar
[4.Murata, H., Ho, I.H., and Stringfellow, G.B., J. Crystal Growth 170, 219 (1997).Google Scholar
[5.Kasu, M. and Kobayashi, N., J. Appl. Phys. 78, 3026 (1995).Google Scholar