Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T06:23:22.888Z Has data issue: false hasContentIssue false

Insights to Repository Performance through Study of a Nuclear Test Site

Published online by Cambridge University Press:  21 March 2011

D.K. Smith
Affiliation:
Analytical and Nuclear Chemistry Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
A.B. Kersting
Affiliation:
Analytical and Nuclear Chemistry Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
J.L. Thompson
Affiliation:
Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
D.L. Finnegan
Affiliation:
Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

Underground nuclear test sites offer an unprecedented opportunity to evaluate processes relevant to high-level waste repository performance in the absence of engineered barriers. Radionuclide migration programs at the Nevada Test Site represent a twenty-five year systematic investigation of the diverse radiologic source terms residual from weapons testing and the evolution of the hydrologic source term which comprises those radionuclides dissolved in or otherwise available for transport by groundwater. The Nevada Test Site shares actinide source terms, correlative geology, an identical tectonic setting, similar climate, and a thick unsaturated zone with the adjacent potential Yucca Mountain high-level waste repository and provides a natural laboratory to assess long-term radionuclide transport in the near field. Analog studies may ultimately help validate predictions of radionuclide transport from the potential Yucca Mountain repository.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Federal Register, Part II, Environmental Protection Agency, 40 CFR Part 197 (1999).Google Scholar
2. Thompson, J.L. in Proceedings of the Fourth International Conference on the Chemistry and Migration Behavior of Actinides and Fission Products in the Geosphere (R. Oldenbourge Verlag, Munchen, 1994), p. 579.Google Scholar
3. Kersting, A.B., EOS, Transactions, Am. Geophysical Union, 80, Supplement, p. S1 (1999).Google Scholar
4. Ahearne, J.F., Phys. Today, 50, p. 24 (1997).Google Scholar
5.U.S.|Department of Energy, DOE/RW-0006, Rev 13, (1997).Google Scholar
6. Weber, W., Ewing, R.C., Angell, C. A., Arnold, G.W., Cormack, A.N., Delaye, J. M., Griscom, D.L., Hobbs, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., Weinberg, M.C., J. Mater. Res, 12, p. 1946, (1997).Google Scholar
7.U.S. Department of Energy, DOE/EIS-0250D (1999).Google Scholar
8. Crowley, K.D., Phys. Today, 50, p. 32 (1997).Google Scholar
9. Fabryka-Martin, J.T., Flint, A.L., Sweetkind, D.S., Wolfsberg, A.V., Levy, S.S., Roemer, G.J.C., Roach, J.L., Wolfsberg, L.E., Duff, M.C., YMP Milestone Report SP2224M3, 1997.Google Scholar
10. Winograd, I.J. and Thordarson, W., Geol, U.S.. Surv. Prof. Paper 712-C, 1975, 126pp.Google Scholar
11. Davisson, M.L., Smith, D.K., Kenneally, J., Rose, T.P., Water Resources Res., 35, p. 279 (1999).Google Scholar
12. Mathews, M., Hahn, K., Thompson, J., Gadeken, L., Madigan, W., J. App. Geophy., 32 (1994).Google Scholar
13. Tompson, A.F.B., Bruton, C.J., Pawloski, G.A., Lawrence Livermore National Laboratory, UCRL-ID-132300, 1999, 319pp.Google Scholar
14. Borg, I.Y., Stone, R., Levy, H.B., Ramspott, L.D., Lawrence Livermore National Laboratory, UCRL-52078, Part 1, 1976, 216pp.Google Scholar
15. Olsen, C.W., Lawrence Livermore National Laboratory, UCRL-70379, Preprint, 1976, 216pp.Google Scholar
16. Bedford, R.G. and Jackson, D.D., Lawrence Livermore National Laboratory, UCRL-12314, 1967, 11p.Google Scholar
17.International Atomic Energy Agency, Technical Report IAEA-MFTR-3, 1998, 94p.Google Scholar
18. Blankennagel, R.K. and Weir, J.E., Geol, U.S.. Surv. Prof. Paper 712-B, 1973, 35p.Google Scholar
19. Laczniak, R.J., Cole, J.C., Sawyer, D.A., Trudeau, D.A., Geol, U.S.. Surv. Water Resources Invest. Report 96-4109, 1996, 59p.Google Scholar
20.U.S. Department of Energy, DOE/RW-0508, (1998).Google Scholar
21.U.S. Army Center for Health Promotion and Preventive Medicine, TG-238, (1999).Google Scholar
22. Wild, J.F., Goishi, W., Meadows, J., Namboodiri, M.N., Smith, D.K. in Atmospheric Nuclear Tests, edited by Shapiro, C.S., (NATO ASI Series, Berlin, Springer-Verlag, 1998), p. 69.Google Scholar
23. Buddemeier, R.W., Finkel, R.C., Marsh, K.V., Ruggieri, M.R., Rego, J.H., Silva, R.J., Radiochim Acta, 52/53, p. 275 (1991).Google Scholar
24. Bryant, E.A., Los Alamos National Laboratory, LA-12335-MS, 1992, 37p.Google Scholar
25. Sawyer, D.A., Thompson, J.L., Smith, D.K., Los Alamos National Laboratory, LA-13555-MS, 1999, 32p.Google Scholar
26. Kersting, A.B., Efurd, D.W., Finnegan, D.L., Rokop, D.J., Smith, D.K., Thompson, J.L., Nature, 397, p. 56 (1999).Google Scholar
27. Buddemeier, R.W., Hunt, J.R., Applied Geochem., 3, p. 534 (1988).Google Scholar
28. Hanks, T.C., Winograd, I.J., Anderson, R.E., Reilly, T.E., and Weeks, E.P., U.S. Geol. Surv. Circular 1184, 1999, 19p.Google Scholar