Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-29T23:14:08.286Z Has data issue: false hasContentIssue false

In-Situ Derivative Cyclic Voltabsorptometric Studies On Poly-3-Methylthiophene

Published online by Cambridge University Press:  22 February 2011

Sally N. Hoier
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
David S. Ginley
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Su-Moom Park
Affiliation:
Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131
Get access

Abstract

Spectroscopic behavior of poly-3-methylthiophene (P3MT) has been studied employing derivative cyclic volt-absorptometric (DCVA) techniques. In the DCVA technique, the derivative absorption signal (dA/dt) is recorded as a function of the applied potential. The dA/dt signals, the spectroscopic analog of electrochemical currents in cyclic voltammetry, are capable of monitoring the potential dependency for the absorption band effectively discriminating against nonfaradaic signals. The DCVA studies on the P3MT system show that the neutral form of P3MT, absorbing at 490 nm (at less than 0.3 V vs. Ag), changes to the radical cation form, which absorbs at 760 nm. Initially, the formation of the radical cation goes through an isosbestic point, indicating that the conversion of the neutral to radical (polaron) form is chemically reversible. However, upon increasing the electrode potential, the rate of the radical formation at 760 nm starts to decrease, with the formation of another band at about 1250 nm, attributable to a quinoid (bipolaron) form. This trend begins above about 0.6 V, shifting to a more positive voltage as the thickness of the film grows. This observation indicates that the electrochemical conversion of the neutral to radical form, followed by the quinoid form, is a slow process controlled by the diffusion of counter ions through the film. In-situ conductivity measurements as a function of applied potentials support the observed spectroscopic behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a). Little, W. A., Phys. Rev. 134A, 1416(1964); l(b). H. Shirakawa, E. J. Louis, MacDiarmid, A. G., C.K. Chiang, and A. J. Heeger, J. Chem, Soc., Chem. Commun. 1977, 578.Google Scholar
2. Simmionescu, C. I. and Percec, V., Prog, Polum, Sci., 8, 133 (1982).Google Scholar
3. Baughman, R. H., Bredas, J. L., Elsenbaumer, R. R., and Shacklette, L. W., Chem, Rev, 82, 209 (1982).CrossRefGoogle Scholar
4. Patil, A. O., Heeger, A. J., and Wudl, F., Chem. Rev., 88, 183 (1988).Google Scholar
5. Seymour, R. B., Editor, Conductive Polymer, Plenum Press, New York (1981).Google Scholar
6. Chien, J. C. W., Polyacetylene - Chemistry, Physics, and Material Science, Academic Press, New York (1984).Google Scholar
7. Epstein, A. J. and Conwell, E. M., Editors, Proceedings International Conf, Low-Dim, Conductors, Mol, Cryst. Liq, Cryst., 83, 1033–1384 (1982).Google Scholar
8. Aldissi, M., Editor, Proceedings of the International Conference on Science and Technology of Synthetic Metals (ICSM '88), Elsevier Sequoia S.A. Lausanne (1989).Google Scholar
9. Waltman, R. J., Bargon, J., and Diaz, A. F., J. phys. Chem., 87, 1459 (1983).Google Scholar
10. (a). Tanaka, S., Sato, M., and Kaeriyama, K., Makromol. Chem., 185, 1295 (1984); 10(b). Etemad, S; Heeger, A. J.; MacDiarmid A. G. Annu. Rev, Phys, Chem., 1982,33, 443.Google Scholar
11. Kaneto, K., Ura, S., Yoshino, K., and Inuish, Y., Jpn. J. Appl. Phys., 23, L189 (1984).Google Scholar
12. Sato, M., Tanaka, S., and Kaeriyama, K., J. Chem. Soc.. Chem, Commun., 1986, 873.Google Scholar
13. Jen, K. Y., Miller, G. G., and Elsenbaumer, R. L., J. chem, Soc.. Chem, Commun, 1986, 1346.CrossRefGoogle Scholar
14. Hotta, S., Rughooputh, S. D., Heeger, A. J., and Wudl, F., Macromolecules, 20, 212 (1987).Google Scholar
15. (a). Hoier, S. N., Ginley, D. S., and Park, S. -M., J. Electrochem. Soc., 135,91 (1988); (b). Kaneto, K.; Kohno, Y; Yoshino, K. Mol, Cryst. Liq. Crys. 1985, 118, 217.Google Scholar
16. Paul, E. W., Ricco, A. J., and Wrighton, M. S., J. Phys. chem., 89, 1441. (1985).Google Scholar
17. Pyun, C. -H. and Park, S. –M, Anal. Chem.,. 58, 251 (1986).Google Scholar
18. Stilwell, D. E. and Park, S. -M., J. Electrochem. Soc, 136, 427 (1989).Google Scholar
19. (a). Zhang, C. and Park, S. -M., Anal. Chem, 60, 1639 (1988); (b) C. Zhang and S. -M. Park, Bull, Korean Chem, Soc,, 10, 302(1989).CrossRefGoogle Scholar
20. Hoier, S. N. and Park, S. -M., 4th Int, SAMPE Electronics Conf., 4, 357. (1990).Google Scholar