Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-28T23:22:44.141Z Has data issue: false hasContentIssue false

Interactions at Metaijinp Interfaces Formed at 300K and 77K

Published online by Cambridge University Press:  10 February 2011

J.W. Palmer
Affiliation:
State University of New York at Buffalo, Department of Electrical and Computer Engineering, Center for Electronic and Electro-Optic Materials, 215 Bonner Hall, Buffalo, NY 14260
W.A. Anderson
Affiliation:
State University of New York at Buffalo, Department of Electrical and Computer Engineering, Center for Electronic and Electro-Optic Materials, 215 Bonner Hall, Buffalo, NY 14260
D.T. Hoelzer
Affiliation:
NYS College of Ceramics, Alfred University, McMahon Hall, Alfred, NY 14802
H. Hardtdegen
Affiliation:
Institut f¨r Schicht- und lonentechnik, Forschungszentrum J¨lich GmbH, Postfach 1913, D-5170 J¨lich, Germany
Get access

Abstract

Depositing Pd or Au on n-InP at cryogenic substrate temperatures has previously been found to significantly increase the barrier height of the resulting Schottky diode. Cross-sectional transmission electron microscopy (XTEM) has been performed on Pd/InP and Au/InP interfaces formed at room temperature (RT) and low temperature (LT) to determine the differences responsible for the change in barrier height. In the Pd case, a solid state amorphization which occurs at the interface upon RT metal deposition is nearly eliminated in as-deposited LT Pd/InP diodes. In the Au case, RT deposition results in the initial monolayers of Au entering the InP lattice, while no such effect was observed in the LT Au/InP diodes. It is clear that the LT deposition dramatically reduces the interaction between the metal and substrate, resulting in a greater barrier height. Enhanced barrier height Schottky diodes are crucial to the development of optical and electronic devices on InP. Preliminary results will be discussed on metalsemiconductor- metal (MSM) photodetectors and metal-semiconductor field-effect-transistors (MESFET's) fabricated using the LT process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Quan, D.T. and Hbib, H., Solid State Elec. 36, 339 (1993).Google Scholar
2. Iliadis, A.A., Lee, W., and Aina, O.A., IEEE Elec. Device Lett. 10, 370 (1989).Google Scholar
3. Shi, Z.Q., Wallace, R.L., and Anderson, W.A., Appl. Phys. Lett. 59, 446 (1991).Google Scholar
4. Shi, Z.Q. and Anderson, W.A., J. Appl. Phys. 70, 3137 (1991).Google Scholar
5. Bravman, J.C. and Sinclair, R., J. Elec. Mic. Technol. 1, 53 (1984).Google Scholar
6. Principles of Analytical Electron Microscopy, edited by Joy, D.C., Romig, A.D., and Goldstein, J.I. (Plenum Press, New York and London, 1986), pp. 123217.Google Scholar
7. Palmer, J.W., Anderson, W.A., Hoelzer, D.T., and Thomas, M., J. Elec. Mater., submitted.Google Scholar
8. Palmer, J.W., Anderson, W.A., and Hoelzer, D.T., Proc. 1994 Fall MRS Meeting 355.Google Scholar
9. McNabb, J.W., Craighead, H.G., Temkin, H., and Logan, R.A., J. Vac. Sci. Technol. B 9, 3535 (1991).Google Scholar
10. Ko, D.H. and Sinclair, R., J. Appl. Phys. 72, 2036 (1992).Google Scholar
11. Caron-Popowich, R., Washburn, J., Sands, T., and Kaplan, A.S., J. Appl. Phys. 64, 4909 (1988).Google Scholar
12. Ivey, D.G., Jian, P., and Bruce, R., J. Elec. Mater. 21, 831 (1992).Google Scholar
13. Williams, R.H., McKinley, A., Hughes, G.J., Montgomery, V., and McGovern, I.T., J. Vac. Sci. Technol. 21, 594 (1982).Google Scholar
14. Stair, K.A. and Chung, Y.W., Phys. Rev. B 32, 3904 (1985).Google Scholar
15. Fatemi, N.S. and Weizer, V.G., J. Appl. Phys. 67, 1934 (1990).Google Scholar
16. Fatemi, N.S. and Weizer, V.G., J. Appl. Phys. 65, 2111 (1989).Google Scholar
17. Brillson, L.J., Brucker, C.F., Katnani, A.D., Stoffel, N.G., Daniels, R., and Margaritondo, G., J. Vac. Sci. Technol. 21, 564 (1982).Google Scholar
18. Kuhl, D., Hieronymi, F., Bottcher, E.H., and Bimberg, D., IEEE Phot. Tech. Lett. 2, 574 (1990).Google Scholar
19. Robach, Y., Besland, M.P., Joseph, J., Hollinger, G., Viktorovitch, P., Ferret, P., Pitaval, M., Falcou, A., and Post, G., J. Appl. Phys. 71, 2981 (1992).Google Scholar