Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-13T15:50:42.916Z Has data issue: false hasContentIssue false

Inter-Cage Orbital Interactions in [2+2] and [4+4] Dimers of Buckminsterfullerene

Published online by Cambridge University Press:  15 February 2011

Shūichi Ōsawa
Affiliation:
Computational Chemistry Group, Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi-ken 441, Japan
Eiji Ōsawa
Affiliation:
Computational Chemistry Group, Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi-ken 441, Japan
Get access

Abstract

Geometry optimization of [2+2]- and [4+4]-dimers of C60 by semiempirical AMI MO method reveals usual length for the bridge bonds of the former but unusually long bonds for the latter. Perturbational analysis of molecular orbitals confirm the presence of orbital interaction through bond (OITB) between the cages in the [2+2] dimer but no interaction in the [4+4] dimer. These results contradict with previous examples of OITB wherein elongation of the mediating σ bond is usually observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES AND NOTES

(1) (a) Beck, R. D., Stoermer, C., Schulz, C., Michel, R., Weis, P., BrAuchle, G. and Kappes, M. M., J. Chem. Phys. 101, 3243 (1994). (b) D. S. Cornett, I. J. Amster, M. A. Duncan, A. M. Rao and P. C. Eklund, J. Phys. Chem., 97, 5036 (1993). (b) A. Manfredini, C. E. Bottani and P. Milani, Chem. Phys. Lett. 226, 600 (1994). (c) A. M. Rao, P. Zhou, K. Wang, G. T. Hager, J. M. Holden, Y. Wang, W.-T. Lee, X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan and 1. J. Amster, Science, 259, 955 (1993). (d) P. W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. Janossy, S. Pekker, G. Oszlanyi and L. Forro, Nature, 370, 636 (1994). (e) N. Takahashi, H. Dock, N. Matsuzawa and M. Ata, J. Appl. Phys., 74, 5790 (1993). (f) C. Yeretzian, K. Hansen, F. Diederich and R. L. Whetten, Nature, 359, 44 (1992). (g) P. Zhou, Z.-H. Dong, A. M. Rao and P. C. Eklund, Chem. Phys. Lett., 211, 337 (1993).Google Scholar
(2) Fischer, J. E., Science, 264, 1548 (1994).Google Scholar
(2a) The only available information on the structure of cage junction in the C60 polymer is based on the preliminary analysis of small angle x-ray scattering data by Stephens et al. Id Google Scholar
(2b) A referee asked the reason why we did not calculate [2+4] C60, dimers, a rational product from thermal reaction. When we started this work, only the photo-reactions were known. Then, after thermal polymerization of C60 was reported, [2+4] dimer was calculated to be 70 to 90 kcal/mol more strained than the [2+2] dimer [N. Matsuzawa, M. Ata, D. A. Dixon and G. fitzgerald, J. Phys. Chem., 98, 2555 (1994)]. Hence we decided to concentrate on the [2+2] dimer for least for the moment. However, [2+4] dimer is interesting with regard to the possibility of OITB, hence we plan to study this molecule by using the same methodology as we used here. There is one other paper reporting on the computation of a [2+4] cycloaddition product from two molecules of C60[D. L. Strout, R. L. Murry, C. Xu, W. C. Eckoff, G. K. Odom and G. E. Scuseria, Chem. Phys. Lett., 214 (1993)]. However, judging from the structure depicted in this paper, we think that these authors meant a product from double [2+2] reactions between 6/6 and 5/6 bonds.Google Scholar
(3) Also called σ/Φ hyperconjugation.Google Scholar
(4) Jordan, K. D. and Paddon-Row, M. N., Chem. Rev., 92, 395 (1992).Google Scholar
(5) Ōsawa, E. and Kanematsu, K., in “Molecular Structure and Energetics”, Vol. 3, edited by Liebman, J. F. and Greenberg, A. (VCH Publishers: N. Y. 1986), Chap. 7.Google Scholar
(6) Dougherty, D. A., Choi, C. S., Kaupp, G., Buda, A. B., Rudzinski, J. and Osawa, E., J. Chem. Soc., Perkin Trans. 2, 1063 (1986).Google Scholar
(7) Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. and Stewart, J. J. P., J. Am. Chem. Soc., 107, 3902 (1985).Google Scholar
(8) MOPAC version 6.01 by J. J. P. Stewart is obtained from the Japan Chemistry Program Exchange, program No. P049. JCPE, c/o Japan Association for International Chemical Information, Nakai Bldg., 6-25-4 Honkomagome, Bunkyo-ku, Tokyo 113. FAX 81-3-5978-3600.Google Scholar
(9) (a) Bakowies, D. and Thiel, W., J. Am. Chem. Soc., 113, 3704 (1991). (b) D. Bakowies, A. Gelessus and W. Thiel, Chem. Phys. Lett., 197, 324 (1992).Google Scholar
(10) Ōsawa, S., Ōsawa, E. and Harada, M., to be submitted for publication.Google Scholar
(11) Ōsawa, E., Rudzinski, J. M. and Xun, Y., Struct. Chem., 1, 333 (1990).Google Scholar
(12) These and other computational results described herein are in reasonable agreement with those recently reported by Scuseria's group [Strout, D. L., Murry, R. L., Xu, C., Eckhoff, W. C., Odom, G. K. and Scuseria, G. E., Chem. Phys. Lett., 214, 576 (1993)].Google Scholar
(13) See Jorgensen, W. L. and Salem, L., “Organic Chemist's Book of Orbitals” (Academic Press, New York, 1973), p. 253, 267-268, for examples of the unnatural ordering in p-benzyne, 6Ag(n+)>5B3u(n-), and pyrazine, 6Ag(n+)>5B1u(n-).5B3u(n-),+and+pyrazine,+6Ag(n+)>5B1u(n-).>Google Scholar
(14) Choice of small models is rationalized by the fact that changes in the structural parameters and charge distribution that occur by the 1,2-addition to C60 are limited to the close vicinity of the reaction site: (a) Creegan, K. M., Robbins, J. L., Robbins, W. K., Millar, J. M., Sherwood, R. D., Tindall, P. J. and Cox, D. M., J. Am. Chem. Soc., 114, 1103 (1992). (b) Y. Elemes, S. K. Silverman, C. Sheu, M. Kao, C. S. Foote, M. M. Alvarez and R. L. Whetten, Angew. Chem. Int. Ed. Engl., 31, 351 (1992). (c) J. M. Hawkins, T. A. Lewis, S. D. Loren, A. Meyer, J. R. Heath, Y. Shibato and R. I. Saykally, J. Org. Chem., 55, 6250 (1992). (d) S. H. Hoke, Jr., J. Molstad, D. Dilettato, M. J. Jay, D. Carlson, B. Kahr and R. G. Cooks, J. Org. Chem., 57, 5069 (1992). (e) K. Komatsu, Y. Murata, A. Miyabo, K. Takeuchi and T. S. M. Wan, Fullerene Sci. Technol., 1, 231 (1993). (f) F. Okino, H. Touhara, K. Seki, R. Mitsumoto, K. Shigematsu and Y. Achiba, Fullerene Sci. Technol., 1, 425 (1993). (g) M. Prado, T. Suzuki, H. Foroudian, Q. Li, K. Khemani, F. Wudl, J. Leonetti, R. D. Little, T. White, B. Rickbom, S. Yamago and E. Nakamura, J. Am. Chem. Soc., 115, 8479 (1993).Google Scholar
(15) Dougherty, D. A., Schlegel, H. B. and Mislow, K., Tetrahedron, 34, 1441 (1978).Google Scholar
(16) Halevi, E. A., “Orbital Symmetry and Reaction Mechanism” (Springer-Verlag, Berlin, 1992).Google Scholar
(17) To be exact, the unnatural order occurs only when OITB dominates the orbital interaction through space (OITS).Google Scholar
(18) The σ-Φ fragment analysis of 3 at the o value of 1 (117.8°) gives essentially the same result as given in Figure 1, but the energy difference between the in-phase and out-of-phase orbitals decreases. This change reflects the decreased orbital interaction through space for small ω's due to the increased distance between the top and bottom wings of naphthalene ring.Google Scholar
(19) The constrained Csp3-Csp3-H angle in 4 is responsible for the vanished OITB, which exists in the unconstrained 4, ref. 15.Google Scholar