Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-09-01T13:23:18.062Z Has data issue: false hasContentIssue false

Intercalation Chemistry: a Novel Approach To Materials Design

Published online by Cambridge University Press:  28 February 2011

E.P. Giannelis
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
V. Mehrotra
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
M.W. Russell
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.
Get access

Abstract

Intercalation of layered solids is used as a means to manipulate a variety of molecular and polymeric species into well-ordered multilayer films with an architecture controllable at the molecular level. Dielectric, conductivity and optical measurements demonstrate the potential of developing new families of materials with new functionalities by exploiting the synergistic effect of guest/host interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Molecular Electronic Devices II, edited by Carter, F.L. (Marcel Dekker, New York, 1984).Google Scholar
2. Bowden, M.J., in Electronic and Photonic AiDlications of Polymers, edited by Bowden, M.J. and Turner, S.R. (ACS, Washington DC, 1988) pp. 173.Google Scholar
3. Intercalation Chemistry, edited by Whittingham, M.S. and Jacobson, A.J. (Academic Press, New York, 1982).Google Scholar
4. Solin, S.A., in Intercalation in Layered Solids, edited by Dresselhaus, M.S. (Plenum Press, New York, 1986) pp. 145154.Google Scholar
5. Pinnavaia, T.J., Science, 220, 365 (1983).Google Scholar
6. Pinnavaia, T.J., in Chemical Physics of Intercalation, edited by Legrand, A.P. and Flandrois, S. (Plenum Press, New York, 1987) pp. 233252.Google Scholar
7. Reichle, W.T., CHEMTECH, 58 (1986).Google Scholar
8. Kwon, T. and Pinnavaia, T.J., Chem. Mat., 1, 381 (1989).Google Scholar
9. Mehrotra, V. and Giannelis, E.P., unpublished data.Google Scholar
10. Dissado, L.A. and Hill, R.M., J. Chem. Soc., Faraday Trans., 80, 291 (1984).Google Scholar
11. Bidadi, H., Schroeder, P.A. and Pinnavaia, T.J., J. Phys. Chem. Solids, 49, 1435 (1988).Google Scholar
12. Blumberg, R., Stanley, H.E., Geiger, A., Mausbach, P., J. Chem. Phys., 80, 5230 (1984).Google Scholar
13. Sposito, G. and Prost, R., Chemical Reviews, 82, 554 (1982).Google Scholar
14. Niklasson, G.A., J. Appl. Phys., 62, Rl (1987).Google Scholar
15. Giannelis, E.P., unpublished data.Google Scholar
16. Newsham, M.D., Giannelis, E.P., Pinnavaia, T.J., Nocera, D.C., J. Am. Chem. Soc., 110, 3880 (1988).Google Scholar
17. Mehrotra, V. and Giannelis, E.P., in Polymer Based Molecular Composites, edited by Shaefer, D.W and Mark, J.E. (Mater. Res. Soc. Proc. 171, Pittsburgh, PA 1990).Google Scholar
18. Chiang, J.C. and MacDiarmid, A.G., Synth. Met., 13, 193 (1986).Google Scholar
19. Kanatzidis, M.G., Wu, C.-G., Marcy, H.O. and Kannewurf, C.R., J. Am. Chem. Soc., 111, 4139 (1989).Google Scholar
20. Biochemistry of Taste and Olfaction, edited by Cagan, R.H. and Kore, M.R. (Academic Press, New York, 1981).Google Scholar
21. Okahata, Y., Ebato, H., Taguchi, K., J. Chem. Soc., Chem. Comm., 1363 (1987).;Google Scholar
21a. Okahata, Y. and Enna, C., ibid., 1365 (1987).Google Scholar
22. Russell, M.W. and Giannelis, E.P., unpublished data.Google Scholar
23. Ozin, G.A., Kuperman, A. and Stein, A., Angew. Chem. Int. Ed. Engl., 28, 359 (1989).Google Scholar
24. Enzel, P. and Bein, T., J. Phys. Chem., 93, 6270 (1989)Google Scholar
25. Mehrotra, V., Kwon, T. and Giannelis, E.P., in Advanced Electronic Packaging Materials, edited by Partridge, J., Li, C-Y., Chen, C.J., Barfknecht, A. (Mater. Res. Soc. Proc. 167, Pittsburgh, PA 1990).Google Scholar