Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-05T21:27:00.346Z Has data issue: false hasContentIssue false

Intraband Absorption in P-Type InGaAs at FIR Frequencies

Published online by Cambridge University Press:  15 February 2011

Xiangkun Zhang
Affiliation:
Solid State Electronics Laboratory, Department of EECS, The University of Michigan, Ann Arbor, MI 48109
Phengpiao Liao
Affiliation:
Solid State Electronics Laboratory, Department of EECS, The University of Michigan, Ann Arbor, MI 48109
Ali Afzali-Kushaa
Affiliation:
Solid State Electronics Laboratory, Department of EECS, The University of Michigan, Ann Arbor, MI 48109
George I. Haddad
Affiliation:
Solid State Electronics Laboratory, Department of EECS, The University of Michigan, Ann Arbor, MI 48109
Get access

Abstract

Intraband absorption in p-type In.53Ga.47 As has been measured at FIR frequencies (40–240 cm−1). It is found that the absorption in p-type InGaAs, which is associated with transitions between the light- and heavy-hole valence bands, is very strong. The absorption coefficient is as high as 103–104 cm−1. It increases with the doping concentration but decreases with the frequency of the incident radiation and temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kaiser, W., Collins, R.J., and Fan, H.Y., Phys. Rev. 91, 1380 (1953).Google Scholar
2. Braunstein, B., and Kane, E. O., J. Phys. Chem. Solids 23, 1423 (1962).CrossRefGoogle Scholar
3. Perkowitz, S., J. Phys. Chem. Solids 32, 2267 (1971).Google Scholar
4. West, L.C., and Eglash, S.J., Appl. Phys. Lett. 46, 11566 (1985).CrossRefGoogle Scholar
5. Levine, B.F., Malik, R.J., Walker, J., Choi, K.K., Gethea, C.G., Kleinman, D.A., and Vandenberg, J.M., Appl. Phys. Lett. 50, 273 (1987).Google Scholar
6. Hu, Q., and Feng, S., Appl. Phys. Lett. 59, 2923 (1991).Google Scholar
7. Mehdi, I., Haddad, G. I., and Maines, R. K., Superlatt. Microstruc. 5, 443 (1989).Google Scholar
8. Loehr, J. P., Singh, J., Mains, R. K. and Haddad, G. I., Appl. Phys. Lett. 59, 2070 (1991).Google Scholar
9. Borenstain, S. I., and Katz, J., Appl. Phys. Lett. 55, 656 (1989).Google Scholar
10. Yee, W.M, Shore, K. A., and Schoell, E., Appl.Phys.Lett. 63, 1089 (1993).Google Scholar
11. Levine, B.F., Gunapala, S.D., Kuo, J.M., Pei, S.S., and Hui, S., Appl Phys. Lett. 59, 1864 (1991).CrossRefGoogle Scholar
12. Katz, J., Zhang, Y., and Wang, W.I., Elctron.Lett. 28, 932 (1992).Google Scholar
13. Afzali-Kushaa, A., Haddad, G.I., and Norris, T.B., Fourth International Symposium on Space Teraherth Technology, 573 (1993).Google Scholar
14. Andronov, A. A., Soviet Phys. Semiconductors 21, 701 (1987).Google Scholar
15. Koniyama, S., and Kuroda, S., Solid State Communications, 59, 167 (1986).CrossRefGoogle Scholar
16. Kremser, C., Heiss, W., Unterrainer, K., Gornik, E., Haller, E. E., and Hansen, W. L. Appl.Phys. Lett. 60, 1785 (1992).CrossRefGoogle Scholar