Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-25T19:58:10.335Z Has data issue: false hasContentIssue false

Ion Beam Synthesis of Buried Single Crystal Erbium Silicide

Published online by Cambridge University Press:  26 February 2011

A. Golanski
Affiliation:
Centre National d’Etudes des Telecommunications, B.P.98, 38240 Meylan, France
R. Feenstra
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
M. D. Galloway
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
J. L. Park
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
S. J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
H. E. Harmon
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
C. W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Get access

Abstract

High doses (1016–1017/cm2) of 170 keV Er+ were implanted into single-crystal 〈111〉Si at implantation temperatures between 350°C and 520°C. Annealing at 800°C in vacuum following the implant, the growth and coalescence of ErSi2 precipitates leads to a buried single crystalline ErSi2 layer. This has been studied using Rutherford backscattering/channeling, X-ray diffraction, cross-sectional TEM and resistance versus temperature measurements. Samples implanted at 520°C using an Er dose of 7 × 1016/cm2 and thermally annealed were subsequently used as seeds for the mesocpitaxial growth of the buried layer during a second implantation and annealing process. Growth occurs meso-epitaxially along both interfaces through beam induced, defect mediated mobility of Er atoms. The crystalline quality of the ErSi2 layer strongly depends on the temperature during the second implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tu, K. N., Thompson, R. D., and Tsaur, B. Y., Appl. Phys. Lett. 38, 262 (1981).Google Scholar
2. Norde, H., de Sousa Pires, J., d’Heurle, F. M., Pesavento, F., Petersson, S., and Tove, P. A., Apply. Phys. Lett. 38, 865 (1981).Google Scholar
3. Knapp, J. A. and Picraux, S. T., Appl. Phys. Lett. 38, 466 (1986).Google Scholar
4. Baglin, J. E., d’Heurle, F. M., and Peterson, C. S., Appl. Pliys. Lett. 36, 594 (1980).Google Scholar
5. Arnaud d’Avitaya, F., Perio, A., Oberlin, J. C., Campidelli, Y., and Chroboezek, J. A., Appl. Phys. Lett. 54, 2198 (1989).Google Scholar
6. Arnaud d’Avitaya, F., Badoz, P. A., Campidelli, Y., Chroboezek, J. A., Duboz, J. Y., and Perio, A., Thin Solid Films 184, 283 (1990).Google Scholar
7. Colanski, A., Appl. Surf. Sci. 43, 200 (1989).Google Scholar
8. Alford, T. L. and Barbour, J. C., Mat. Res. Sytnp. Proc. 157, 137 (1990).Google Scholar
9. Colanski, A., Christie, W. H., Galloway, M. D., Park, J. L., Pennycook, S. J., Poker, D. B., Moore, J. L., Harmon, H. E., and White, C. W., “Ion Beam Modification of Materials,” to be published (1990).Google Scholar
10. In Pliysicnl Chemistry, An Advanced Tcreatise, Vol. X, Jost, W. Editor, Academic Press, New York, London, 748 (1970).Google Scholar
11. Waile, T. R., Phys. Rev. 107, 463 (1957).Google Scholar
12. Kolhof, K., Mantl, S., Stritzker, B., and Jager, W., Nucl. instr. Moth, in Phys. Res. B39, 276 (1989).Google Scholar