Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-13T13:03:46.945Z Has data issue: false hasContentIssue false

Ion Channeling Measurements on Germanium Implanted and Annealed Silicon

Published online by Cambridge University Press:  25 February 2011

E.A. Johnson
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA, 01730
F. Namavar
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA, 01730
E. Cortesi
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA, 01730
R.J. Culbertson
Affiliation:
U.S. Army Materials Technology Laboratory, Watertown, MA 02172-0001
Get access

Abstract

We have prepared GexSi1-x/Si structures by implanting germanium into silicon <100> surfaces and thermally annealing. Implant energies were 100 and 150 keV and the total ion doses were between 1 and 10 × 1015 ions/cm2. Ion channeling studies of these structures indicates that after annealing, the germanium atoms substitute into the silicon lattice and create a pseu-domorphic strained layer. In addition, channeling results suggest a residual band of dislocations at or beyond the ion range in the as-annealed samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Namavar, F., Cortesi, E., and Sioshansi, P., Proc. Mat. Res. Soc. EA-18. 109 (1988).Google Scholar
2 Namavar, F., Buchanan, B., Cortesi, E., and Sioshansi, P., Proc. Mat. Res. Soc. 147, 235 (1989).Google Scholar
3 El-Masry, N., Tarn, J.C.L., Humphreys, T.P., Hamaguchi, N., Karam, N.H., and Bedair, S.M., Appl. Phys. Lett. 51, 1608 (1987).Google Scholar
4 Kroemer, H., Proc. Mat. Res. Soc. 67 3 (1986) and references.Google Scholar
5 Kamins, T.I., Wang, K.L., Park, Jin, and Davis, G.E., J. Appl. Phys. 65, 1505 (1989)Google Scholar
6 Hollander, B., Mantl, S., Stritzker, B., Jorke, H., and Kasper, E., J. Mat. Res. 4, 163 (1989).Google Scholar
7 People, R., IEEE J. Quantum Elect., QE–22, 1696 (1986).Google Scholar
8 Hull, R. and Bean, J.C., Appl. Phys. Lett., 54, 925 (1989).Google Scholar
9 We gratefully acknowledge the collaboration and support of Dr. James V. McCauley, Mr. Forrest C. Burns, Ms. Laura J. Lowder, and Mr. Douglas K. Simkins of The Emerging Technologies Directorate, Materials Science Branch, at the U.S. Army Materials Technology Laboratory.Google Scholar
10 Ziegler, J.F., private communication. The computer code and underlying physics are described in The Stopping Power and Range of Ions in Solids J.F. Ziegler, J.P. Biersack, and U. Littmark, (Pergamon Press Inc., New York, 1985).Google Scholar
11 Gemmell, D.S., Rev. Mod. Phys. 46, 129 (1974).Google Scholar
12 K. Jones, U. Florida, private communication. See also Jones, K.S., Prussin, S., and Venables, D., Proc. Mat. Res. Soc. 100, 277 (1988).Google Scholar
13 Bean, J.C., Feldman, L.C., Fiory, A.T., Nakahara, S., and Robinson, I.K., J. Vac. Sci. Tech. A2, 436 (1984).Google Scholar
14 Dismukes, J.P., Ekstrom, L., and Paff, R.J., J. Phys. Chem 68, 3021 (1964).Google Scholar
15 Rimini, E., Material Characterization Using Ion Beams, eds. Thomas, J.P. and Cachard, A., Plenum Press, New York, p. 455 (1978).Google Scholar
16 Foti, G., Picraux, S.T., Campisano, S.V., Rimini, E., and Kant, R.A., Ion Implantation in Semiconductors, eds. Chernow, F., Borders, J.A., and Brice, D.K., Plenum Press, New York, p. 247 (1977).Google Scholar