Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-29T08:08:59.288Z Has data issue: false hasContentIssue false

Ion Implantation and Annealing Studies in III–V Nitrides

Published online by Cambridge University Press:  10 February 2011

J. C. Zolper
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0603,
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
J. S. Williams
Affiliation:
Dept. of Electronic Materials Engineering, Australian National University, Canberra, 0200, Australia,
H. H. Tan
Affiliation:
Dept. of Electronic Materials Engineering, Australian National University, Canberra, 0200, Australia,
R. J. Karlicek Jr.
Affiliation:
Emcore Corp., Somerset, NJ 08873
R. A. Stall
Affiliation:
Emcore Corp., Somerset, NJ 08873
Get access

Abstract

Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced Ill-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor.1-4 Although these initial implantation studies demonstrated the feasibility of this technique for the Ill-Nitride materials, further work is needed to realize its full potential.

After reviewing some of the initial studies in this field, we present new results for improved annealing sequences and defect studies in GaN. First, sputtered A1N is shown by electrical characterization of Schottky and Ohmic contacts to be an effective encapsulant of GaN during the 1100 °C implant activation anneal. The A1N suppresses N-loss from the GaN surface and the formation of a degenerate n+-surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, we examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. We show that for a Si-dose of l × l016 cm-2 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Zolper, J. C., Yuan, C., Stall, R. A., Appl. Phys. Lett. 67, 1435 (1995).Google Scholar
2 Zolper, J. C., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68 1945 (1996).Google Scholar
3 Zolper, J. C., Hagerott Crawford, M., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Yuan, C., and Stall, R. A., J. Electron. Mat. 25 839 (1996).Google Scholar
4 Zolper, J. C., Shul, R. J., Baca, A. G., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68 2273 (1996).Google Scholar
5 Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jap. J. Appl. Phys. 30 L1998 (1991).Google Scholar
6 Nakamura, S., Mukai, T., Senoh, M., Iwasa, N., and Nagahama, S., Appl. Phys. Lett. 67 1868 (1995).Google Scholar
7 Nakamura, S., Senoh, M., Nagahama, S., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jap. J. Appl. Phys. 35, L74 (1996).Google Scholar
8 Lester, S. D., Ponce, F. A., Craford, M. G., and Steigerwald, D. A., Appl. Phys. Lett. 66 1249 (1995).Google Scholar
9 Khan, M. A., Bhattarai, A., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
10 Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Elect. Lett. 30, 1248 (1994).Google Scholar
11 Burm, J., Schaff, W. J., Eastman, L. F., Amano, H., and Akasaki, I., Appl. Phys. Lett. 68, 2849 (1996).Google Scholar
12 Fan, Z., Mohammad, S. N., Aktas, O., Botchkarev, A. E., Salador, A., and Morkoc, H., Appl. Phys. Lett. 69, 1229 (1996).Google Scholar
13 Wu, Y-F., Keller, B. P., Kapolnek, D., Denbaars, S. P., and Mishra, U. K., Appl. Phys. Lett. 69, 1438 (1996).Google Scholar
14 Pankove, J. I., Tech Digest Inter. Elec. Dev. Meeting, San Francisco, CA, Dec. 11-14, 1994, p. 389.Google Scholar
15 Gallium Arsenide: Materials Devices, and Circuits: ed. Howes, M. J. and Morgan, D. V. (John Wiley & Sons, New York, 1985) chapter 10.Google Scholar
16 Binari, S. C., Proc. of the Sym. Wide Bnadgap Semiconducotrs and Devices, Electrochemical Society, October 8-13, Chicago, IL vol 95–21, 136 (1995).Google Scholar
17 Ren, F., et al. J. Vac Sci. Tech, B, (in press).Google Scholar
18 Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K., J. Lumin. 48/49 666 (1991).Google Scholar
19 Strite, S., Jpn. J. Appl. Phys. 33, L699 (1994).Google Scholar
20 Von Neida, A. E., Pearton, S. J., Hobson, W. S., and Abernathy, C. R., Appl. Phys. Lett. 54, 1540 (1989).Google Scholar
21 Zolper, J. C., Baca, A. G., and Chalmers, S. A., Appl. Phys. Lett. 62, 2536 (1993).Google Scholar
22 Zolper, J. C., Sherwin, M. E., Baca, A. G., and Schneider, R. P. Jr, J. Elec. Mat. 24, 21 1995).Google Scholar
23 Pearton, S. J., Inter. J. Modern Physics B, 7, 4686 (1993).Google Scholar
24 Strite, S. and Epperlein, P. W., Conf. Proc. MRS, Fall 1995, symposium AAA (Material Research Society, Pittsburgh PA, 1996) p. 795.Google Scholar
25 Zolper, J. C., Rieger, D. J., Baca, A. G., Pearton, S. J., Lee, J. W., and Stall, R. A., "Sputtered AIN Encapsulant for High-Temperature Annealing of GaN," Appl. Phys. Lett. 69, 538 (1996).Google Scholar
26 Mileham, J. R., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Shul, R. J., and Kilcoyne, S. P., Appl. Phys. Lett. 67, 1119 (1995).Google Scholar
27 Mileham, J. R., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Shul, R. J., and Kilcoyne, S. P., J. Vac. Sci. Tech. B (in press).Google Scholar
28 Vartuli, C. B., Lee, J. W., MacKenzie, J. D., Pearton, S. J., Abernathy, C. R., Zolper, J. C., Shul, R. J., Ren, F., Materials Research Society, Boston MA, Dec. 2-6, 1996, in press.Google Scholar
29 Thurmond, C. D. and Logan, R. A., J. Electrochem. Soc. 119, 622 (1972).Google Scholar
30 Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
31 Lester, L. F., Brown, J. M., Ramer, J. C., Zhang, L., Hersee, S. D., and Zolper, J. C., Appl. Phys. Lett. 69, 2737 (1996).Google Scholar
32 Yuan, C., Salagaj, T., Gurary, A., Zawadzki, P., Chern, C. S., Kroll, W., Stall, R. A., Li, Y., Schurman, M., Hwang, C.-Y., Mayo, W. E., Lu, Y., Pearton, S. J., Krishnankutty, S., and Kolbas, R. M., J. Electrochem. Soc. 142, L163 (1995).Google Scholar
33 Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., and Yuan, C., Proc. 1st Symp. on III-V Nitride Materials and Processes, Electrochemcial Society, vol. 96–11, 142 (1996).Google Scholar
34 Zolper, J. C., Tan, H. H., Williams, J. S., Zhou, J., Cockayne, D. J. H., Pearton, S. J., Crawford, M. H., and Karlicek, R. F. Jr., Appl. Phys. Lett, (submitted).Google Scholar
35 Ion Implantation and Beam Processing ed. Williams, J. S. and Poate, J. M. (Academic Press, Sydney, 1984).Google Scholar