Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T14:57:49.625Z Has data issue: false hasContentIssue false

Ion Irradiation-Induced Amorphization in the MgO-Al2O3-SiO2 System: A Cascade Quenching Model

Published online by Cambridge University Press:  15 February 2011

S. X. Wang
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
L. M. Wang
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
R. C. Ewing
Affiliation:
Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

The ion beam-induced crystalline-to-amorphous transition was studied for crystalline phases in the MgO-A12O3-SiO 2 system. Samples were irradiated with 1.5 MeV Xe+ at temperatures from 15 to 1023 K, and the dose required for amorphization was determined by in situ transmission electron microscopy. Based on a cascade quenching model, we propose that irradiation-induced amorphization is closely related to glass formation. The rate of crystallization from a melt is the controlling factor in determining the susceptibility to amorphization and glass formation. From the analysis of cascade quenching evolution, we have derived a simple relation between amorphization dose and temperature. A quantitative parameter, S0, that describes the susceptibility to amorphization is derived that considers the crystalline structure, field strength, and phase transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hobbs, L. W., Clinard, F. W. Jr., Zinkle, S. J. and Ewing, R. C., J. Nucl. Mater. 216, 291 (1994).Google Scholar
2. Wang, L. M. and Birtcher, R. C., Phil. Mag. A64, 1209 (1991).Google Scholar
3. Birtcher, R. C. and Wang, L. M., Nucl. Instr. and Meth. B59/60, 966 (1991).Google Scholar
4. Koike, J., Okamoto, P. R., Rehn, L. E. and Meshii, M., J. Mater. Res. 4, 1143 (1989).Google Scholar
5. Naguib, H. M. and Kelly, R., Radiat. Eff. 25, 1 (1975).Google Scholar
6. Matzke, Hj., Radiat. Eff. 64, 3 (1982).Google Scholar
7. Ewing, R. C., Wang, L. M. and Weber, W. J., Mat. Res. Soc. Symp. Proc. 373, 347 (1995).Google Scholar
8. Kelly, R., Radiat. Eff. 182/183, 351 (1981).Google Scholar
9. Eby, R. K., Ewing, R. C. and Birtcher, R. C., J. Mater. Res. 7, 3080 (1992).Google Scholar
10. Yu, N., Sickafus, K. E. and Nastasi, M., Phil. Mag. Lett. 70, 235 (1994).Google Scholar
11. Allen, C. W., Funk, L. L., Ryan, E. A. and Ockers, S. T., Nucl. Instr. and Meth. B40/41, 553 (1989).Google Scholar
12. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
13. Wang, L. M., Gong, W. L. and Ewing, R. C., Mater. Res. Soc. Symp. Proc. 316, 247 (1993).Google Scholar
14. Diaz de la Rubia, T., Averback, R. S., Hsieh, H., and Benedek, R., J. Mater. Res. 4, 579 (1989).Google Scholar
15. Averback, R. S. and Ghaly, M., J. Appl. Phys. 76, 3908 (1994).Google Scholar
16. Wang, S. X., Wang, L. M., Ewing, R. C., and Doremus, R. H., J. Appl. Phys., in press.Google Scholar
17. Wang, S. X., Wang, L. M., Ewing, R. C., and Doremus, R. H., J. Non-Cryst. Mater. (submitted).Google Scholar
18. Eby, R. K., Ewing, R. C. and Birtcher, R. C., J. Mater. Res. 7, 3080 (1992).Google Scholar
19. Uhlmann, D. R., in: Advances in Nucleation and Crystallization in Glasses. edited by Hench, L. L. and Freiman, S. W. (American Ceramic Sodiety, 1971) 91.Google Scholar
20. Wang, S. X., Wang, L. M., and Ewing, R. C. (in preparation).Google Scholar
21. Gupta, P. K., J. Am. Ceram. Soc. 76 (1993) 1088.Google Scholar
22. Hobbs, L. W., Nucl. Instrum. Methods B91 (1994) 30.Google Scholar
23. Dietzel, A., Z. Elektrochem. 48, 9 (1942).Google Scholar
24. Sun, K., J. Am. Ceram. Soc., 30, 277 (1947).Google Scholar