Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-01T20:12:06.143Z Has data issue: false hasContentIssue false

Ir, Visible, and UV Photoluminescence Dependence on the Composition of Quantum Nanocrystals

Published online by Cambridge University Press:  21 February 2011

S.L Kim
Affiliation:
Structured Materials Industries Inc., Newark, NJ 07102
T. Hart
Affiliation:
Stevens Institute of Technology, Hoboken, NJ 07030
B.K. Khan
Affiliation:
N. A. Philips, Briarcliff, NY
G.S. Tompa
Affiliation:
Emcore Corp. Somerset, NJ
Y. Lu
Affiliation:
Rutgers University, Piscataway, NJ
G. Sun
Affiliation:
Johns Hopkins University, Baltimore, MD
J. Khurgin
Affiliation:
Johns Hopkins University, Baltimore, MD
Get access

Abstract

The recent demonstration of PL (Photoluminescence) and EL (Electroluminescence) in porous silicon has been a tremendous advance toward the integration of optoelectronics and Si digital electronics. It has come to be understood that the primary source of luminescence is quantized structures of Si or quantum nanocrvstals (QNCs). We have demonstrated IR, visible and UV photoluminescence from QNCs formed of Si and of Ge in a homogeneous SiCO2 matrix. The nanocrystal dimensions and resulting PL indicate that the active mechanism is 3-dimensional confinement of carriers in the QNCs within the wider bandgap SiCO2. Raman analysis confirms the presence of QNCs in the ~20 to 100 A range. SIMS analysis was used to gauge compositional effects on luminescence wavelength. The QNC matrix concept is immediately extendable to several additional material systems. The stable nature of QNCs embedded within a matrix offer further advances toward the integration of optoelectronics with Si devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Canham, , Appl. Phys. Lett., 57, 1046 (1990)Google Scholar
2 Xu, , Gal, M., and Gross, M., Appl. Phys. Lett., 60, 1375 (1992)Google Scholar
3 Steckl, , Xu, J., Mogul, H.C., and Mogren, S., Appl. Phys. Lett., 62, 1982 (1993)Google Scholar
4 Steiner, , Kozlowski, F., Sandmaier, H., and Lang, W., MRS Symp. Proc. Vol. 283, 343 (1993)Google Scholar
5 Kalkhoran, M., MRS Symp. Proc. Vol. 283, 345 (1993)Google Scholar
6 Shi, , Zheng, Y., Wang, Y., and Yuan, R., Appl. Phys. Lett., 63, 770 (1993)Google Scholar
7 Fathauer, , Dejewski, S.M., George, T., Jones, E.W., T.N, Krabach, and Ksendzov, A., Appl. Phys. Lett. 62, 1774(1993)Google Scholar
8 Morisaki, , H, Hashimoto, F.W, Ping, Nozawa, H., and Ono, H., J. Appl. Phys., 74, 2977 (1993)Google Scholar
9 Fujii, et al. , Jpn. J. Appl. Phys., 30, 687 (1991)Google Scholar
10 Kim, , Hart, T., Forsythe, E., Khan, B.A., Tompa, G. S., and Lu, Y., submitted to Appl. Phys. Lett, on 7/93 Google Scholar
11 Maria, D. J. et al. , J. Appl. Phys., 56(2) 15 Jury, 1984 Google Scholar
12 Ni, J. and Arnold, E., APL 39, 559 (1981).Google Scholar
13 Matsushita, T. et. al., IEEE Tr. on ED, ED-23, 826 (1976).Google Scholar
14 Ang, S.S., IEEE Tr on ED, ED-35, 1378 (1988).Google Scholar
15 Hamasaki, M., J. Appl. Phys., 49(7), 3987, (1978)Google Scholar
16 D.Olego, and H.Baumgart, , JAP, 63(8), 15, 1988, pp 2669.Google Scholar
17 Liu, , Chen, J.S., M.A, Nicolet, Arbet-Engels, V., and Wang, K.L., Appl. Phys. Lett., 62(25), 3321,(1993)Google Scholar